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Abstract

This paper studies the informational content of pricing errors in the term structure of sovereign CDS

spreads. The residuals from a non-arbitrage model are employed to construct a price discrepancy estimate,

or noise measure. The noise estimate is understood as an indicator of market distress and reflects frictions

such as illiquidity. Empirically, the noise measure is computed for an extensive panel of CDS spreads.

Our results reveal an important fraction of systematic riskis not priced in default swap contracts. When

projecting the noise measure onto a set of financial variables, the panel-data estimates show that greater

price discrepancies are systematically related to a higherlevel of offsetting transactions of CDS contracts.

This evidence suggests that arbitrage capital flows exit themarketplace during time of distress, and this

consistent with a market segmentation among investors and arbitrageurs where professional arbitrageurs

are particularly ineffective at bringing prices to their fundamental values during turbulent periods. Our

empirical findings are robust for the most common CDS pricingmodels employed in the industry.
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1 Introduction

The literature in asset pricing has discussed the crucial role played by arbitrage capital in removing price

deviations from fundamental values. Trading frictions, such as illiquidity and information asymmetries, can

lead transaction prices to depart substantially from their theoretical counterparts; see, among others, Merton

(1987), Brunnermeier and Pedersen (2009), and Duffie (2010). Although price discrepancies are mostly

a transient phenomenom, they can be systematically related to the latent forcesthat characterize the market

environmental conditions to which investors in general, and arbitrageurs inparticular, are extremely sensitive.

The recent literature has provided empirical evidence of these links, placing particular emphasisis on the term-

structure of fixed-income securities. Hu et al. (2013) show that deviations from a smooth zero-coupon yield

curve in sovereign bonds are associated to illiquidity in the US Treasury bond market. Similarly, Berenguer

et al. (2013) find that differences in the liquidity of bonds with the same creditworthiness lead to yields that

may depart from their expected level in a theoretical liquidity-free term structure of interest rates.

In this paper, we examine the informational content of pricing errors fromnon-arbitrage models in the

term structure of sovereign Credit Default Swaps (CDS). Default swaps are a well-known class of over-the-

counter (OTC) derivatives traded for investing and speculating single name default risk at different maturities.

The CDS market has undegone tremendous growth over recent years,now accounting for more than two

thirds of all outstanding credit derivatives (Goldstein et al. 2013). In parallel to the increasing importance of

this market, significant effort has been devoted to understand how CDS prices are formed. However, many

key aspects of this process remain unsolved in the literature, since active CDS trading is a relatively new

phenomenon.

The main aim of this paper is to examine the economic determinants that underlie CDSpricing errors as a

consequence of market frictions, seeking to characterize the existenceof systematic patterns generally related

to illiquidility and transaction costs in temporary price deviations. The central hypothesis is that a decline

in capital arbitrage, typically observed during periods of distress, increases market-wide illiquidity and leads

to greater deviations from fundamental values. As discussed by Garman and Ohlson (1981), Tuckman and

Vila (1992), or Schleifer and Vishny (1997), arbitrage is an inherently risky and costly activity due to market

inefficiencies. Professional arbitrageurs are reluctant to trade under circumstances in which the cost of iden-

tifying and successfully implementing arbitrage operations can be prohibitive. In turn, the lack of sufficient

arbitrage capital limits the strength of arbitrage, breaking the general agreement about pricing and enabling

assets to be traded in equilibrium at prices significantly different from theirfundamental values. Accordingly,

the observable variables that generally capture trading and holding costsand which are expected to have a

sharp influence on arbitrage capital could be used to explain and even predict fundamental-value discrepan-

cies. The empirical evidence may be particularly significant in markets which are usually characterized by

intense professional arbitrage activity, such as the CDS market.

To analyze the informational content of CDS pricing errors we implement robust panel-data techniques
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(including two-way cluster errors, fixed-effect panel data, and instrumental-variable panel data) on a broad

sample of weekly sovereign default swap spreads from 16 countries in both advanced and emerging economies

in the period 2008 to 2012. A suitable measure of CDS term-structure price discrepancy is regressed on either

contemporaneous or lagged illiquidity-related variables at the country level.The right-hand side variables in

this analysis capture transaction costs which may proxy for changes in arbitrage capital after controlling for

other potential drivers. The dependent variable is the log-transform of a price-discrepancy statistical mea-

sure, adapted from Hu et al. (2013), and defined as the root mean square deviation between the market and

model-implied CDS term structure spreads. While this measure was originally implemented in Treasury bond

markets, its foundations are so general that it can be extrapolated directlyto the CDS market. For robustness,

we consider a number of theoretical CDS pricing models that vary considerably in complexity and the under-

lying assumptions behind them to generate pricing errors, all of which are widely used by applied researchers

and practitioners. Although the main discussion follows under the arbitrage-free default-intensity model in

Pan and Singleton (2008), we also implement the spline-type model suggestedby Nelson and Siegel (1987),

and a deterministic quadratic function for the conditional default probability curve as in Houweling and Vorst

(2005).1

The evidence from this analysis allows us to draw several important conclusions. The most important

result is that there exists a strong empirical connection between market-wideilliquidity factors and sovereign

CDS missvaluation as is generally predicted by the arbitrage-capital hypothesis. Accordingly, bid-ask spreads

–the most usual proxy for illiquidity and transaction costs in asset pricing and market microstructure– and

the outstanding net notional position –defined as the net funds transference between sellers and buyers, a

measure of effective trading activity– are major drivers of pricing errors and significant short-term predictors

of their variability. More specifically, larger bid-ask spreads and increments in the number of CDS offsetting

transactions can systematically be related to larger CDS pricing errors, bothcontemporaneously and in one-

week ahead periods. The rationale for this finding lies in the existence of a link that ties arbitrage activity to

market illiquidity and, hence, greater price discrepancies, as discussedpreviously. Consequently, the main

empirical evidence in this paper provides empirical support for the general theoretical claims of this literature

in the specific context of CDS markets.

In addition, the analysis provides a clear insight into the systematic patterns –both in the time-series and

in the cross-section– that characterize pricing errors in sovereign CDSmarkets over the period analyzed. As

expected under the arbitrage capital hypothesis, CDS price deviations substantially increase during periods of

financial distress such as Lehman’s collapse in September 2008, or the Greek bailout in March 2010. Further-

1There exists several methods for pricing default swaps. On the one hand, a common practice in the industry is to bootstrap the
survival probabilities from the observed quotes. To this end, both nonparametric (piecewise constant hazard rates) and parametric
(Nelson and Siegel, 1987) interpolation methods are commonly used in practice. On the other hand, the intensity modeling approach
has been extensively accepted among researches for pricing fixed income instruments such as corporate bonds (Lando (1998), Duffie
and Singleton (1999) or Duffee, 1999) and default swaps (Longstaff et al. (2005), Berndt et al. (2005), Pan and Singleton (2008) and
Longstaff et al., 2011).
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more, pricing errors exhibit strong cross-country commonalities that can be captured by market-wide factors,

more prominently, illiquidity- and volatility-related factors. This evidence strongly suggests the existence of

global trends that lead to systematic mispricing in the CDS market. A simple principalcomponent analysis

reveals that about 50% of the total variation in pricing errors can be explained by two principal components.

The projection of the first component on different proxies of global market-wide illiquidity and volatility

results in statistically significant coefficients andR2 measures of about 26%. The panel-data analysis shows

that the noise measure significantly covariates with local illiquidity measures after controlling for other po-

tential drivers, leading toR2 measures of about 95%. Similarly, heterogeneity in creditworthiness between

advanced and emerging economies lead to systematic differences in pricing errors. The immediate implica-

tion of all this evidence is that CDS prices must be driven by different riskfactors which include, at least, a

time-varying source of non-diversifiable illiquidity risk. This interpretation isconsistent with the increasing

evidence about the existence of an illiquidity component in credit markets in general, and CDS in particular.

The main conclusions hold after controlling for a number of macroeconomic and financial state variables,

using different estimation techniques, and different pricing models.

This paper belongs to the increasing stream of literature devoted to CDS pricing and illiquidity. A non-

exhaustive review of this literature includes the papers by Longstaff et al. (2005), Chen et al. (2005), Chen

et al. (2008), Pan and Singleton (2008), Tang and Yan (2008), Bühler and Trapp (2009), Lin et al. (2009),

Bongaerts et al. (2011), Nashikkar et al. (2011), Arakelyan et al. (2013), and Corò et al. (2013); see also Xing

et al. (2007), Bao et al. (2011), Lin et al. (2011), and Acharya et al. (2013) for related work. Earlier studies in

this field argued that CDS prices may not be significantly affected by liquidity because their specific contrac-

tual nature makes it possible to easily trade large notional amounts compared tobond markets, implying that

CDS spreads may better reflect default risk premium; see, for instance, Longstaff et al. (2005) and Blanco

et al. (2005). However, the recent literature largely supports the hypothesis that CDS prices are not just driven

by a default risk factor, but also by (at least) a component related to illiquidity risk; see, for instance, Berndt

et al. (2005), Pan and Singleton (2008), Tang and Yan (2008), and Bongaerts et al. (2011). In a recent anal-

ysis on corporate CDS spreads, Corò et al. (2013) conclude that liquidity risk is even more important than

firm-specific credit risk regardless of market conditions. The empirical evidence in the current paper largely

supports the claims of this branch of the literature. The additional compensationrequired for market maker

risk seems to play a crucial role in CDS transaction prices, particularly during periods of distress. As a result,

illiquidity-related factors are largely responsible of pricing errors in non-arbitrage default intensity models.

This paper also belongs to the literature centered on the analysis of the economic determinants of pricing

errors from arbitrage-free pricing models and its diverse implications, particularly in derivative markets.

Jarrow et al. (2011) characterize arbitrage opportunities from a non-arbitrage pricing model under a CIR

specification, showing how to implement profitable strategies in this context; seealso Duffie (1999). Our

paper adopts a different approach and examines the systematic sourcesof CDS mispricing. The idea of
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comparing market prices with theoretical prices obtained from a non-arbitrage model to inform about market

liquidity is implicitly contained in Nashikkar et al. (2011), who construct an estimate of the CDS-bond basis

by computing the difference between market and a hypothetical CDS spread. While we are not aware of

other papers dealing with mispricing in CDS markets, several studies in the extant literature have analyzed

the drivers of pricing errors in other derivative exchanges. Peña et al. (1999) characterize the determinants

of the implied volatility function in European options under the Black-Scholes (BS) model. The distinctive

U-shaped pattern that emerges, known as ‘smile’, suggests that the BS model systematically misprices deep

in-the-money and out-of-the-money options. Since none of the generalizations of the BS formula can remove

this pattern completely, Peña et al. (1999) argue that the apparent failureof the BS model is (partially) due to

transaction costs and liquidity effects, as proxied by bid-ask spreads. These authors show that the curvature

of the implied-volatility function increases on the size of bid-ask spreads, which implies a clear link between

pricing errors and transaction costs in the BS setting. Similar results have been reported for other derivative

products, such as interest-rate options; see Deuskar et al. (2008) and references therein. The evidence in

Deuskar et al. (2008) is particularly relevant for our paper because, like CDS contracts, interest-rate options

are traded in OTC markets, where liquidity-providers are more sensitive to market conditions. Although

our methodological approach differs substantially, the overall results in our paper completely agree with the

evidence reported in these studies, suggesting that pricing errors in derivative contracts are generally sensitive

to market-wide illiquidity. Finally, our paper builds on the price discrepancy measure of Hu et al. (2013) and

complements their paper in two main ways. First, by discussing the generality andsuitability of this measure,

originally implemented in the context of Treasury bond exchanges, in other markets. Secondly, by reporting

evidence showing that this measure does indeed correlates with market-wideliquidity conditions from a

different methodological approach. While Hu et al. (2013) use the measure in an asset-pricing analysis, we

analyze the determinants that ultimately underlie greater price discrepancies.

The rest of the paper is organized as follows. Section 2 introduces the noise or pricing discrepancy

measure and discusses its suitability for the CDS market. Section 3 presents thedataset employed in this

paper and explores its main statistical features. Section 4 presents the econometric framework and discusses

the main results that characterize the noise measure. Section 5 analyzes the determinants of pricing errors,

considering a broad set of market-wide indicators. Section 6 conducts several robustness checks. Finally,

Section 7 summarizes and concludes.

2 Pricing errors in the CDS term structure

This section formalizes the theoretical relation between pricing errors and market frictions with the main

purpose of introducing the notation and the main concepts used throughoutthe paper. It also examines

the link between arbitrage capital and pricing errors in CDS markets, introducing the discrepancy or noise
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measure proposed by Hu et al. (2013) and a discussion on its general suitability in the context of this paper.

2.1 Mispricing and arbitrage opportunities

The theoretical arguments used here are primarily taken from Jarrow et al. (2011), who provide a formal

demonstration on how the residuals from a term structure pricing model can be related to the existence of

arbitrage opportunities. The central point is to construct a portfolio immune tochanges in the underlying

asset, longing a given maturity contract (e.g. 5-year) and shorting otherdifferent maturities (for example,

the 3- and 7-year).2 Under standard arbitrage arguments, this strategy is self-financed and the prices of the

credit instruments must be consistent across maturities. Consequently, the (expected) value of this portfolio

is zero when employing suitable weights whose composition is detailed in Jarrow et al. (2011). As a result,

whenever the value of the portfolio differs from zero, an arbitrage opportunity emerges.

To introduce notation and outline the formal demonstration, consider the priceat timet of a CDS with

maturity m, denotedCDSt(m), defined as certain function of the risk-neutral default probability,λQ
t , say

CDSt(m) = f m
t (λQ

t ). Under usual assumptions, a second-order Taylor expansion of the theoretical CDS price

function at times= t +∆t yields

f m
t (λQ

s ) = f m
t (λQ

t )+(λQ
s −λQ

t )Hm
1t +

1
2
(λQ

s −λQ
t )2Hm

2t +O

((
λ̃Q

s

)3
)
, (1)

where∆t denotes a short period of time,λ̃Q
s is a midpoint in the line that joinsλQ

s andλQ
t , andO(·) is a

(bounded) remaining term. The termsHm
1t andHm

2t are the first- and second-order derivatives of the pricing

function with respect to the default probability, respectively.

According to Jarrow et al. (2011), the current price of a CDS at times approximates its price at timet,

i.e. f m−∆t
s (λQ

s )≈ f m
t (λQ

s ), with m−∆t denoting the correction for the maturity time lapse. This assumption

enables a connection between the future price of a CDS contract with its current price and certain correcting

terms. In particular,

f m−∆t
s (λQ

s )≈ f m
t (λQ

t )+(λQ
s −λQ

t )Hm
t +

1
2
(λQ

s −λQ
t )2Hm

2t . (2)

and, hence, investors could build a delta and gamma-neutral hedging portfolio formed by three default swaps

with different maturities, saym0, m1 andm2, such that

f m0
t (λQ

t )+n1t f m1
t (λQ

t )+n2t f m2
t (λQ

t )≈ f m0−∆t
s (λQ

s )+n1t f m1−∆t
s (λQ

s )+n2t f m2−∆t
s (λQ

s ), (3)

where the portfolio weightsn1t andn2t are explicitly chosen to form the market neutral portfolio. On average,

2The default probability of the reference entity is the underlying of a default swap contract. Nevertheless, the results of Jarrow
et al. (2011) are also extensible to other term structure derivatives such as interest rate options or commodity futures.
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the theoretical value of portfolio (3) must equal the market price of the portfolio, from which the following

relation emerges:

(
f m0
t (λQ

t )−CDSt(m0)
)
+n1t

(
f m1
t (λQ

t )−CDSt(m1)
)
+n2t

(
f m2
t (λQ

t )−CDSt(m2)
)

≈ εm0
t +n1tεm1

t +n2tεm2
t , (4)

with CDSt(mi) denoting the observed market prices, andεmi
t = f mi

t (λQ
t )−CDSt(mi) defined implicitly.

Apart from the tracking error of the strategy, equation (4) shows that discrepancies between the observed

and theoretical prices in the CDS curve are directly informative of arbitrage opportunities in the CDS market.

Similarly, Duffie (1999) shows that the condition of no arbitrage binds the value of a CDS contract to the

prices of a risky bond and a riskless par bond of the same maturity. In the absence of market frictions, the

yield of the risk-free bond must be equal to the difference between the yield of the risky bond and the value of

the CDS contract, expressed as a percentage of the risky bond nominal value. Consequently, arbitrageurs can

trade in the CDS market when they detect profitable opportunities involving mispricing in bond markets, since

buying a CDS contract is similar to shorting the underlying bond. Indeed, a great deal of professional arbitrage

activity, such as that of hedge funds and proprietary trading desks ofinvestment banks, is concentrated in the

bond and CDS markets; see, for instance, Nashikkar et al. (2011), Goldstein et al. (2013) and Oehmke and

Zawadowsky (2013).

2.2 Market frictions and prices discrepancies

The differences between observed and theoretical prices may not necessarily appear as a consequence of a

temporary misappraisal of the fundamental value, but also as a consequence of market frictions. Among oth-

ers, Schleifer and Vishny (1997) argue that arbitrage is often a risky investment activity that requires capital.

These authors show that professional arbitrageurs are reluctant to trade under extreme market circumstances

as the cost of identifying or successfully implementing arbitrage operations can be prohibitive. The main

reason is that volatility increases informational asymmetries and exposes arbitrageurs to unwind their posi-

tions prematurely, possibly incurring substantial losses. As a result, risk-averse specialized arbitrageurs avoid

extremely volatile markets, which reduces the market effectiveness in eliminating differences between funda-

mental and transaction prices.3 It is worth mentioning that, while many well-known theoretical asset pricing

models do not acknowledge the impact of transaction costs on prices, in practice these may have substantial

effects. This seems to be particularly true in OTC markets, as these are characterized by a high degree of

illiquidity, irregular trading, asymmetric information, and greater counterparty-search costs relative to stock

markets; see Tang and Yan (2008) for a discussion. For instance, search costs largely affect market liquidity

3Goldstein et al. (2013) argue that in highly segmented markets, such as the CDS market, the existence of investors with fairly
heterogeneous trading opportunities can lead to multiplicity of equilibria, causing instability in prices. This feature may explain
jumps and excess volatility in the CDS markets.
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and market prices, as theoretically discussed by Duffie et al. (2005), leading to higher transactions costs and

preventing potential liquidity providers from participating in the market.

The existence of a relationship between market frictions and pricing deviations brings up the issue of

capturing these discrepancies empirically. With the purpose of aggregatingall the information provided by

the CDS curve, let us definem1,m2, ...,mN as an increasing sequence of maturities, and denote asCDSt(mi)

andCDS∗t (mi) the observed CDS spread for thei-th maturity and the corresponding model-implied theoret-

ical price at timet, respectively. LetCDSt = (CDSt(m1), ...,CDSt(mN))
′ be a (N×1) vector collecting the

observed CDS spreads representative of the CDS term structure at timet, and defineCDS∗t analogously. The

most natural measure for the existence of pricing discrepancies is givenby the Euclidean distance between

both curves,δt = ||CDS∗t −CDSt ||, namely,

δt =

√
N

∑
i=1

(CDSt (mi)−CDS∗t (mi))
2 (5)

such thatδt = 0 if and only if all the prices along the curveCDSt match with the fundamental values, and

δt > 0 captures the distance between both curves otherwise. While a number of transformations can be defined

on the normδt , in this paper we shall consider the log-transformation of the re-scaled distancenoiseCDS,t ≡
δt/

√
N proposed in Hu et al. (2013). Note thatnoiseCDS,t may also be seen as a sample-based measure of the

mean cross-sectional dispersion of the pricing error at timet. The termnoisewas coined by Hu et al. (2013)

since, in the fixed-income literature, it is usual to refer to deviations from a given pricing model as noise.

Some comments on(5) follow. First, Hu et al. (2013) originally proposed the noise measure in the

different context of Treasury bonds. The main premise is that the abundance of arbitrage capital during normal

times helps smooth out the Treasury yield curve and keep the average dispersion low. In periods of stress,

arbitrage capital vanishes and, hence, the average dispersion increases. On the basis of the corresponding

noise measure, saynoiseTBond,t , these authors show indeed that the deviations between market yields on

Treasury bonds and their model-based yields are characteristically low –and liquidity correspondingly high–

in normal periods, but generally tend to increase during crises, as arbitrage capital exits the marketplace.

The noise measure successfully captures, therefore, an empirical link between price deviations and arbitrage

capital.4 Because the price of sovereign CDS contracts are not independent ofthe price of a Treasury bond

of the same maturity (Duffie, 1999), and since professional arbitrageurs such as hedge funds and proprietary

trading desks of investment banks are particularly active in CDS markets, we may expect that arbitrage capital

featuresnoiseCDS,t in a similar way as it does withnoiseTBond,t . Therefore, the average dispersion of CDS

spreads should be expected to be low during normal periods, when arbitrage capital actively contributes

to align CDS spreads, and high in turmoil periods, when arbitrage capital exits the market. In that case,

abnormally high values ofnoiseCDS,t may be related to episodes of market illiquidity and local or global

4This measure has been used subsequently in a number of applied studies; see, for instance, Filipovic and Trolle (2013).
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shortage of arbitrage capital. This is the central hypothesis analyzed in thispaper.

Second, the Euclidean normδt depends on the prices generated by a theoretical term-structure pricing

model, and so doesnoiseCDS,t . Although we shall consider different approaches, we focus initially onthe

continuous-time, arbitrage-free CDS pricing model of Pan and Singleton (2008). The distinctive character-

istic of this model is that it yields a full theoretical term structure of CDS spreads consistent with the no

arbitrage condition that overperforms other alternative approaches; see, for example, Longstaff et al. (2011).

A priori, it seems reasonable to expect that sensible choices of alternative pricing models would lead to sim-

ilar patterns in the resultant pricing errors. However, since this is ultimately anempirical issue, we shall

address the robustness of the main conclusions based on Pan and Singleton (2008) by focusing on alternative

term structure pricing models that differ in complexity and underlying assumptions. This will be extensively

discussed in Section 6.2.

3 The data

CDS are contracts where one party (protection seller) shorts credit riskto another (protection buyer) against

the default of a certain bond (reference entity). The CDS spread represents the annual percentage over the

total amount of the bond (notional) paid to the insurer for obtaining protectionin case of a credit event. The

dataset analyzed in this paper consists of an unbalanced panel of weekly sovereign CDS spreads from 16

economies of the G-20 group: Argentina, Australia, Brazil, China, France, Germany, Indonesia, Italy, Japan,

Mexico, Saudi Arabia, South Africa, South Korea, Spain, UK and US. The final composition of this sample

was solely dictated by the availability of the data. The choice of the weekly frequency aims to avoid potential

caveats related to the low trading activity at daily frequency of most sovereign CDS contracts.5 The sample

initially available spans the period from January 1st, 2006 to November 9th, 2012 and includes 358 weekly

observations for most of these countries. The data for some countries (Saudi Arabia, UK, and US) is available

on a shorter period and includes a smaller number of observations, ranging from 228 (Saudi Arabia) to 257

(US) data. The maturity spectrum of CDS contracts in the sample comprises all available maturities from

one to ten years. All contracts are denominated in US dollars and written under the Complete Restructuring

(CR) clause. Data have been provided by Credit Market Analysis (CMA), a quote provider integrated in the

Datastream platform.6

Together with CDS spreads, we observe different variables related to trading activity and liquidity. These

variables are provided by the Depository Trust & Clearing Corporation (DTCC), which reports public infor-

5Chen et al. (2011) analyze the distribution of total trading frequency of sovereign CDS contracts across all maturities. From a
total of 74 reference entities, just 4 are actively traded on average 30 times daily; and 14 out of 74 are less actively traded, at 15 times
per day on average. The remaining sovereign references are infrequently traded at an average of twice daily.

6The CMA database collects daily CDS spreads from a robust consortium that consists of approximately 40 members from the
buy-side community (hedge funds, asset managers, and major investment banks), which are active participants in the CDS market.
Daily reports on bid, ask and mid-quotes are available to us. Mayordomo et al. (2013) state that the quoted CDS spreads provided by
CMA led the credit risk price discovery process with respect to the quotesprovided by other databases.
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mation about real transactions of CDS contracts since November 2008. Inparticular, we observe both the

gross and net notional CDS positions, and the number of outstanding contracts in the CDS market. The gross

notional value is the aggregate sum of the CDS contracts bought or sold for a single reference entity. The

net notional values represents the aggregate net funds transference between protection sellers and buyers that

could be required upon the occurrence of a credit event relating to a particular reference entity. Finally, the

number of contracts reports the outstanding number of contracts for a given reference.

3.1 Descriptive analysis

3.1.1 CDS spreads

Figure 1 shows the time series dynamics of the cross-sectional medians of thesovereign CDS spreads at 1-,

5- and 10-year maturities over the total available sample, from January 1st,2006 to November 9th, 2012. To

account for likely structural differences across countries, we split the total sample into two subsamples. A first

group is characterized by Advanced Economies (henceforth AE) and includes Australia, France, Germany,

Italy, Japan, Spain, UK, and US. A second group is characterized by Emerging Economies (henceforth EE)

and is formed by the remaining countries in the sample.

[FIGURE 1 ABOUT HERE]

For both subsamples, the cross-sectional medians increase monotonically from 1- to 10-year maturities,

thereby revealing an upward slope in the CDS spreads term-structure over the period. In addition, CDS

spreads exhibit time-varying dynamics with a considerable sensitivity to episodes of financial distress. More

specifically, CDS spreads show similar responses to the largest systemic shocks over the period, peaking after

the defaults of Bear Stearns (March 2008) and Lehman Brothers (September 2008). Although this pattern is

clearly visible for both AE and EE groups, there are idiosyncratic patternsacross countries that can be related

to creditworthiness differences and that are worth discussing in detail. Inparticular, while the average CDS

spreads in the AE group exhibit moderate values before the default of Bear Stearns at the different maturities,

they increase steadily until mid 2011 as a consequence of the European debt crisis. These series exhibits a

mean-reverting behavior in the final part of the sample, when the concerns in the Eurozone dissipated and

default probabilities reverted to lower levels. On the other hand, while CDS spreads in the EE group largely

increased around the collapse of Lehman Brothers, they show resilienceagainst the idiosyncratic shocks that

featured the European debt crisis. Lastly, CDS spreads in the AE grouphave a lower median and lower

volatility than CDS spreads in EE group. The maximum cross-sectional median value raised to 450 basis

points for emerging countries after Lehman Brother’s collapse, while the peak in advanced economies was

around 200 basis points in the midst of the European crisis.

[TABLE 1 ABOUT HERE]
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Table 1 reports the usual descriptive statistics (mean, median and standarddeviation) of CDS spreads

for each country in the sample. For the ease of exposition, we report these statistics for the representative

cases of 1-, 5-, and 10-year maturities, noting that a complete analysis is available upon request. As expected

from the previous discussion, there are significant differences in average spreads across maturities, consistent

with the upward slope of the term structure discussed previously. Argentina is the economy with the lowest

creditworthiness in the sample. Accordingly, the mean 5-year maturity CDS spread is 964.41, considerably

greater than the spread of any other country in the sample. This series alsoexhibits a massive degree of

volatility, given by a standard deviation of 897.20, which is caused by extreme observations in the upper tail

recorded after the Lehman Brother’s collapse. As discussed previously, there is a meaningful mean-volatility

pattern in CDS spreads such that countries with higher spreads tend to consistently exhibit higher volatility

levels as well. This result suggests that investors are more sensitive to news affecting default probabilities

when creditworthiness is low. Not surprisingly Germany, widely seen as thesafe haven by investors, is the

economy with the overall best credit creditworthiness in the sample. The meanspread values for the 5-year

German CDS contract is 33.20, with a standard deviation of 30.68, the smallestamong the different countries

analyzed.

Previous literature on CDS have put forward the existence of a strong degree of commonality in sovereign

CDS spreads. Principal Component Analysis (PCA) on the standardizedCDS spread series confirms the

existence of a strong commonality in the behavior of sovereign spreads. Inparticular, the first principal com-

ponent (PC1) of the system explains approximately 74% of the total cross-country variation, which increases

to nearly 88% when a second principal component (PC2) is included. Interestingly, the previous literature

has not discussed whether the degree of commonality tends to be stable overtime or exhibits time-varying

patterns. Note that, for instance, a sharp reduction in the explanatory power of the first principal component

will be indicative of idiosyncratic patterns that would likely lead to greater pricing errors. Because this ques-

tion is particularly relevant in the context of this paper, we perform a dynamic PCA analysis, computing the

principal components on the basis of the 100 most recent observations atany time in the sample on the basis

of a rolling-window approach.

[FIGURE 2 ABOUT HERE]

Figure 2 shows the time series dynamics of the proportions of explained cross-country variability which

are related to either the conditional PC1, or PC1 and PC2, given the 1-, 5-and 10-year maturities. Some

interesting results emerge from this analysis. First, the share of variability explained by PC1 sharply declined

from 90% to approximately 40% during the summer of 2011. This sheer decayaffected all maturities and

can be related to the European sovereign debt crisis. Adding a second factor reduces the magnitude of this

decline, allowing the share total variability explained to reach about 65%, but still far from the average

level achieved before this episode. Figure 2 also shows that the proportion of explained variance over the
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total tends to be higher as the maturity increases, especially after August 2011. Finally, the levels of total

variability explained by the first two principal components eventually reverted to the level observed before

July 2011, with the exception of the 1-year maturity. Overall, this simple descriptive analysis suggests that a

single factor (roughly corresponding with PC1) may not be able to consistently capture the full variation in the

term structure of sovereign CDS spreads over time. Furthermore, there are important differences across the

maturities that characterize the term structure, with the 1-year CDS contractexhibiting a more idiosyncratic

behavior. As discussed in Pan and Singleton (2008), the most likely reason being that liquidity is lower at

this maturity.

3.1.2 Trading activity and liquidity-related data

The sovereign CDS market has become one of the most active markets in the aftermath of the financial

crisis. The relative volume of the sovereign CDS contracts traded is particularly sizeable. According to

DTCC, the gross notational outstanding ranges from USD 0.71 trillions in November 14th, 2008 to USD 1.70

trillions in November 9th, 2012, showing the sharp increase in trading activityin CDS markets over recent

years as a consequence of the financial crisis. Similarly, the net notionaloutstanding ranges from USD 0.08

trillions to USD 0.15 trillions over the same period. These series show a considerably degree of commonality

across countries, reflecting the existence of common world-wide trends. For instance, the PC1 on either

the gross or net notional outstanding series accounts for nearly 76% ofthe total variation of these series (a

complete analysis is available upon request). Because the central premise inthis paper is that mispricing in

CDS markets can be related to illiquidity, Tables 2 and 3 report descriptive statistics on trading activity and

liquidity based on these variables.

[TABLE 2 ABOUT HERE]

Table 2 provides a summary of the weekly increments of the number of outstanding contracts, and the

gross and net notional positions of the sovereign CDS written on the countries under study. For comparative

purposes, we also include the relative position of the contracts with respect to the remaining G20 countries,

i.e., the ratio of each country over the total G-20 group. The sample availablespans the period November

14th, 2008 to November 9th, 2012. Note that, since trade-related informationis not available for Saudi

Arabia, this country has been excluded from the analysis. The weekly average increment in the number of

contracts over the sample period is of approximately 20 contracts, with the meangross and net position sizes

reaching USD 318.23 and 20.63 millions, respectively. Trading activity is far from being homogeneous across

the different countries in the period analyzed. In particular, Italy and Spain show the highest increments in

the number of contracts and gross outstanding volumes, reflecting the financial tensions of these countries

during the European debt crisis. Similarly, the overall net position on CDS has largely increased for other

advanced economies in the EMU area, particularly, France, suggesting effects related to financial contagion.
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The average of net notional CDS positions over the period is negative for Argentina and Spain, and tends to

exhibit larger positive values for the economies with better creditworthinessin the sample. Negative values

of this variable can be related to offsetting transactions in the CDS market. In this way, the net volume can

be taken as a crude proxy for professional arbitrage activity and will play a major role in the analysis of

determinants in Section 5.

[TABLE 3 ABOUT HERE]

Table 3 reports descriptive statistics (mean, median, and standard deviation) for the bid-ask spreads of

CDS contracts for each country. For conciseness, we report these descriptives at 1-, 5- and 10-year maturities,

noting that a complete study on all maturities is available upon request. In addition, Table 3 reports descriptive

statistics for the so-called veracity index, an indicator of data reliability at each maturity elaborated directly by

the data provider. The analysis on bid-ask spreads essentially reveals the same features discussed previously.

Clearly, there exists a negative relationship between bid-ask spread andcreditworthiness. Countries with

lower default probabilities exhibit smaller bid-ask spreads uniformly over the maturities. Similarly, and

consistent with the previous discussion, the CDS with higher average bid-ask spreads are also the more

volatile, showing a greater disagreement on fundamental values. In particular, while Germany and France are

the countries with the lowest bid-ask averages and standard deviations, Argentina and Saudi Arabia in the EE

group exhibit the highest values of these statistics in the sample. Interestingly, the average bid-ask spreads

are higher at the 1-year maturity, suggesting that sovereign CDS investors seem to incorporate their liquidity

concerns about a country in the short-term maturities of the curve, as pointed out by Pan and Singleton (2008).

Finally, the analysis on the veracity index reveals similar values with no particular pattern across countries,

indicating that the CDS sample is representative of the real trade quotes finally traded in the market.

4 Estimating the noise measure

4.1 Theoretical CDS spreads and econometric estimation

The empirical implementation of the noise measure requires model-implied theoretical prices. Most of the

pricing models for CDS spreads in the extant literature strive essentially to capture default risk and the po-

tential loss upon default, similarly to that of credit spreads for corporate bonds. The intensity framework of

Duffie and Singleton (1999) and Lando (1998) seems to be the most popular pricing framework. Under this

approach, the default event is modeled as the first jump of a Poisson process with stochastic default intensity

λQ
t , whereQ denotes the risk-neutral measure. Then, the (annualized) price of a CDS contract for maturity
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wherert andRQ denote, respectively, the risk-free interest rate and the recovery offace value (in percentage)

of the referenced bond under the risk-neutral measure; see Longstaff et al. (2005) and Pan and Singleton

(2008), among others. The left-hand side of this equation represents thepremium on the sum of expected

discounted cash-flows paid by the protection buyer under the risk-neutral measure. This premium is the

CDS spread and is quarterly. The right-hand side accounts for the expected discounted payoff received by

the protection buyer in case of a default event. Single-name CDS contractsare written without up-front

payments, which equals both sides of expression (6).

In this setting, Pan and Singleton (2008) propose an intensity model, referred to as PS in the sequel, which

presents remarkable advantages over other affine pricing models for CDS spreads. While the CIR process has

been extensively employed for modeling the default intensityλQ
t , as it provides closed-form formulas (e.g.

Duffee (1999), Driessen (2005) or Longstaff et al., 2005), the Feller condition bounds the long-term mean

of the CIR-based intensity to the square-root of its long-term variance, arequirement frequently violated in

practice. The PS model not only overcomes this drawback, but also provides a good compromise between

model parsimony and performance in a comparison of several one-factor intensity models; see, for instance,

Berndt (2006) for a discussion on a related approach. For these reasons, and although we stress that we

shall consider alternative modeling approaches later on, the arbitrage-free PS model is the pricing benchmark

chosen for characterizing empirically price discrepancies in CDS markets.We provide a brief discussion on

the implementation of this model below.

The PS model assumes that the logarithm of the risk-neutral default intensityλQ
t follows an Ornstein-

Uhlenbeck diffusion process characterized by

d lnλQ
t = κP

(
θP− lnλQ

t

)
dt+σQdWP

t , (7)

whereκP andθP are the long-run mean, and mean-reversion rate of the process under the actual or historical

measureP, respectively, withσQ denoting the volatility of the process andWP
t a standard Wiener process.

The model also characterizes the dynamics of (7) under the risk-neutralmeasureQ,

d lnλQ
t = κQ

(
θQ− lnλQ

t

)
dt+σQdWQ

t , (8)

and the market price of risk, sayΛt , can be defined through the affine functionϕ0+ϕ1 lnλQ
t , whereϕ0 and

ϕ1 denote constant parameters. The process (8) ensures the positiveness of risk-neutral default intensity.

However, the expectations in CDS formula (6) are not in closed-form, so numerical techniques as the Crank-
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Nicholson scheme are required.

The parameters that characterize the PS model can be estimated by maximum likelihood, given a number

of additional assumptions. The reader is referred to the original paper for details, but we briefly sketch the

main steps involved in the estimation of this model in the sequel. In particular, the PSprocedure requires the

assumption that CDS contracts at a certain maturity are priced with no error, whereas prices at the remaining

maturities can be freely determined. Since the 5-year CDS contract is widely considered as the more liquid

maturity, we make the same assumption as Pan and Singleton (2008) and consider this contract is free of

pricing errors. Then, a series of the probability of defaultλQ can be obtained by solving the pricing formula

(6) for this coefficient. This involves non-linear numerical techniques, using the 3-, 6-, 9- and 12-month

USD Libor and 2-, 3-, 4-, 5-, 7- and 10-year USD interest rate swapsto construct the risk-free curve that

characterizes (6). The remaining CDS contract maturities are assumed to bepriced with random errorsεm,t

that obey a normal multivariate distribution with zero mean vector and covariance matrixσ2
MIN−1, whereIN−1

denotes theN−1 dimensional identity matrix andN is the number of different maturities. For parsimony and

computational tractability, we assume thatσM is constant across maturities, noting however that results do

not qualitatively differ from more general specifications.7 The estimation of the model also requires the dis-

cretization ofλQ in expression (7), for which we adopt the Euler’s approach setting∆t = 1/52. The unknown

parameters of the modelψ = (ψP,ψQ,σM)′, with ψP = (κP,θP)′, ψQ = (κQ,θQ,σQ,RQ)′, can be estimated

by maximizing the conditional log-likelihood function∑T
t=2 ln f P(εm,t |ψ ,Ft−1), with Ft−1 denoting the set

of available information up tot, and

f P(εm,t |ψ ,Ft−1) = φP(εm,t |σM,Ft−1)×φP(lnλQ
t |ψP,σQ,Ft−1)×

∣∣∣∣
∂CDSQ(λQ|ψQ,Ft−1)

∂λQ
t

∣∣∣∣
−1

(9)

whereφP(·) denotes the probability density function of the Normal distribution,λQ
t as given by expression

(7), andCDSQ(·) in formula (6).

[TABLE 4 ABOUT HERE]

Table 4 reports the maximum-likelihood estimates ofψ (robust standard errors in parenthesis). The mean-

reversion speed estimates under the actual measure,κP, are higher than the mean-reversion speed coefficients

under the risk-neutral measure,κQ, indicating that the arrival of credit events last longer under this measure.

Moreover, the long-run mean estimates are also higher under the risk-neutral measure (κQθQ > κPθP),

suggesting that the arrival of events in the risk-neutral scenario is moreprobable than in the actual one. In

7The assumption of homoskedasticity of the pricing errors across maturities is introduced to reduce the number of parameters
of the model and simplify the computational estimation. The existence of an average level of common volatility across maturities
can be expected not to have a major effect on the estimations. This observation has been confirmed by conducting the estimations
of the model assuming heteroskedasticity in the pricing errors across maturities. These results are not presented for the sake of
conciseness, but are available upon request. In Section 6 we shall consider alternative specifications that do not impose assumptions
on the distribution of pricing errors.
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other words, a positive risk premium related to changes in the credit environment seems to be priced in

the CDS market. Finally, the recovery rateRQ is closely related to the creditworthiness of the country:

South Korea, South Africa, Germany, France and UK exhibit the highestvalue (around 80%), in contrast

to Argentina and Spain (around 3%). Overall, the model yields reasonableestimates that are coherent with

related studies in the extant literature; see, for instance, Pan and Singleton(2008) and Longstaff et al. (2011).

4.2 Main results

Given the maximum-likelihood estimates ofψ , we can readily determine the theoretical prices implied by the

PS model and the resultant estimates of the noise measure,noiseCDS,t . Figure 3 shows the time series variation

of the 25%, 50%, and 75% percentiles ofnoiseCDS,t given the sovereign CDS belonging to either the AE or

EE groups. The median time-series tend to be relatively low during normal periods, consistent with a low

dispersion in the CDS spread term structure. Nevertheless, the noise measure largely increases during stress

periods, showing a sharp increment in price dispersion. Note, for instance, that the median time-series for both

AE and EE groups peak after systemic episodes such as the collapse of Lehman Brothers in September, 2008,

or the Greek bailout in March, 2010. Clearly, the average values ofnoiseCDS,t in both groups is characterized

by a strongly non-linear, globally mean-reverting pattern which can be associated to latent dynamics that

determine whether the economy is a normal or stressed regime. This evidencecompletely agrees with the

results reported by Hu et al. (2013) for the noise measure in the US Treasury bond market.8 Although, on

average, pricing discrepancies tend to be greater and much more volatile in the EE group (thereby suggesting

the existence of an idiosyncratic component in the series), it is clear that theAE and EE noise measures

exhibit common patterns and follow a similar trend, which strongly suggests the existence of a source of

global commonalities in mispricing.

[FIGURE 3 ABOUT HERE]

Table 5 reports standard descriptive statistics of the estimates of the noise measure for any of the sovereign

CDS analyzed. The overall mean value is 13.08 basis points, but there is a strong heterogeneity across coun-

tries. The individual averages range from 4.52 (Germany) to 85.70 basis points (Argentina). Furthermore, the

volatility of noiseCDS,t largely varies from distressed to resilient economies, showing the largestdifferences

for Argentina, Indonesia, Italy and Spain. In contrast, solid economies,such as the US or Germany, show the

smallest degree of average dispersion in pricing errors. The largest value of the noise measure in Argentina

reaches 1111.39 basis points, whereas the US peaks at 17.22 basis points. Clearly, the noise measure is re-

lated to the factors that characterize whether the CDS spread has a large mean value and high dispersion or

not.
8The non-linear, mean-reverting path of the noise series is even more evident in the analysis ofnoiseTBond,t in Hu et al. (2013)

because the sample analyzed therein spans a longer period, from 1987through 2011. Over this period,noiseTBond,t is shown to spike
prominently as a consequence of shocks related to crises, and revertto the mean level afterwards.
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[TABLE 5 ABOUT HERE]

Since, as discussed previously, short-term maturities exhibit larger idiosyncratic patterns, an important

question refers to whether CDS maturities contribute equally to the noise measure. This is an economi-

cally important concern because the existence of a systematic mispricing of CDS contracts of a given ma-

turity could indicate the existence of pricing factors not captured by the model (Pan and Singleton, 2008).

To address this question, we can define the relative contribution of maturitymτ to the noise measure as

ωt(mτ) = |CDSt(mτ)−CDS∗t (mτ)|/δt , τ = 1, ...,10, with δt as defined in (5), noting that 0≤ ωt(mτ) ≤ 1,

and∑10
τ=1 ωt(mτ) = 1. Recalling that the PS model assumes no pricing error at the 5-year maturity byinitial

assumption, it follows by constructionωt(5) = 0, and it should be understood that the relative contributions

of the remaining maturities are conditional to this assumption.

Table 6 reports basic time-series statistics (mean, median and standard deviations) of ωt(mτ) for each

maturity and each country in the sample, and the maturity for which the relative contributionωt(mτ) is the

largest. According to these results, the 1-year contract systematically exhibits the highest contribution to the

noise measure.9 The relative contributions of the pricing errors to the total range from 26.93% in the US

to 59.20% in Argentina. Larger mispricing errors in the 1-year maturity suggests the existence of common

factors across countries that are driving the dynamics of the residuals at shortest maturities. A possible

interpretation of this behavior is pointed out by Pan and Singleton (2008), who suggest that large institutions

might employ short-term CDS contracts as primary trading vehicles for expressing their views on sovereign

bonds, inducing illiquidity or trading pressures in these maturities. These authors argue that 1-year (and

perhaps 10-year) contracts include an idiosyncratic liquidity component due to the short/long-term nature of

these instruments. The main evidence from this simple analysis supports this claim.

[TABLE 6 ABOUT HERE]

Before a more formal analysis is conducted, it is worth analyzing the existence of commonalities in

pricing errors. The PCA on the standardized noise series across countries reveals that the first principal

component is able to capture approximately 33% of the total variation of these series. The share of explained

variance increases to 56% and 65% when second and third components are included, respectively. In order

to gain insight into the economic interpretation of these latent components, Figure 4 shows the loadings of

PC1 and PC2. Clearly, PC1 can be interpreted as a world-wide market trend, since all the countries except

Brazil and China exhibit positive loadings. These are uniformly distributedacross advanced economies,

pivoting around an average coefficient of 0.70. On the other hand, theloadings of emerging markets are

significantly smaller, but still positive in most cases. Turning our attention to theloadings of PC2, these

9Australia, China and US seem to be rare exceptions. Even though the noiseis concentrated at longer maturities for these
countries, the standard deviation of the noise contribution to the 1-year maturity is still the highest across maturities.

17



exhibit a heterogeneous behavior that, once more, can be related to creditworthiness heterogeneity in the

sample. In particular, the estimated loadings tend to be positive or mildly negativefor the countries in which

the noise measure exhibits low mean values and low volatility, such as Australia, France, Germany, UK, and

US. Conversely, loadings are mostly negative for countries in which pricing errors have a relatively high mean

and high volatility, such as most countries in the EE group and distressed economies in Southern Europe such

as Spain.

[FIGURE 4 ABOUT HERE]

The strong degree of commonality in the residuals of the pricing model stronglysuggests the existence of

risk factors which are not properly captured by the model but which, nevertheless, are systematically priced

in the CDS market. To gain further insight into the sources of commonality and their economic interpreta-

tion, we project the time series increments of PC1 and PC2, denoted as∆PC1 and∆PC2, respectively, on

the increments of a set of market-wide global state variables sampled from theUS market over the period

December 2007 to November 2012. Using variables from the US market to proxy for global conditions in

this preliminary analysis seems reasonable because of the strong degree of globalization in financial markets,

and the predominance of the US economy (see, among others, López-Espinosa et al. (2012) and Rapach et al.,

2013). Nevertheless, we stress that a more detailed analysis, builing on country-specific variables, shall be

conducted in the next section. The explanatory variables used in this preliminary analysis are the changes

in the volatility index of the Chicago Board Options Exchange (VIX), used asan indicator of global uncer-

tainty; the change in Moody’s bond spread index between AAA and BBB bonds (Default), used as a proxy

for corporate default spread; the return of the Dow Jones Index (DJIndex), used as a natural indicator of stock

market performance and market risk; the change in the first PC of net notional volumes (PC1netvol), and the

first PC of bid-ask spreads at 5-year maturity (PC1BA5y), both of which are used as proxies of aggregate

market liquidity. All these variables are sampled weekly.

[TABLE 7 ABOUT HERE]

Table 7 reports the OLS estimates for the individual regression of∆PC1 (Panel A) and∆PC2 (Panel

B) on a constant and any of the state variables. The Table also reports themain outcomes from the OLS

regression on all these variables. For conciseness, we only discuss the results for the regressions involving

∆PC1, since this factor captures the main source of common variation in cross-country mispricing, and the

results of∆PC2 follow along the same lines. In individual regressions, all the state variables are highly

significant, with the sole exception of the first principal component of net volumes (PC1netvol). Hence,

the global trend that seems to underlie PC1 is positively related to market-wide increments in volatility and

default probabilities, and it is negatively related to market-wide returns andliquidity. The joint regression

of ∆PC1 on all the explanatory variables simultaneously yields a significantly and positive association with
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VIX, and a significantly and negative association with returns and the principal component of net volume. The

remaining variables (Default and PC1BA5y) no longer provide incremental information over these variables.

The adjusted-R2 in this regression is approximately 26%.

The main conclusions from the preliminary analysis conducted in this section allows us to conclude that

price discrepancies exhibit a strong time-varying pattern which increasessubstantially during distress periods.

Pricing errors are mainly contributed by discrepancies at the 1-year maturity, so they must be related to short-

term fluctuations. Furthermore, the PCA analysis reveals a strong sourceof commonality that can be related

to market-wide stress conditions, with a first component able to explain nearly33% of the total variability

that can be related to state variables that define a scenario of high volatility, negative market performance, and

liquidity withdraws. This evidence shows a characteristic scenario which fitssquarely with the theoretical

predictions in Schleifer and Vishny (1997), showing that larger pricing errors can systematically be related to

adverse economic scenarios. These conclusions, based on a simple anddirect analysis, shall be confirmed in

a more rigorous analysis based on panel-data regressions in the next section.

5 Determinants of pricing errors in CDS markets

The main objective of this paper is to examine the economic determinants of pricingerrors in the CDS term

structure. To this end, we implement different estimation procedures within thepanel-data methodology that

regress a log-transform of the noise measure on either contemporaneous or lagged values of illiquidity-related

variables. Our main aim is to parsimoniously address the existence of an empirical relationship between price

discrepancies and market-wide illiquidity, considering mainly country-specific variables that capture local

information on the liquidity conditions in the CDS market as well as other potential global control variables.

5.1 State variables

We consider a panel of country-specific and global variables that canbe grouped into the categories of market-

wide illiquidity and market uncertainty. The set of illiquidity-related variables include i) the 5-year maturity

bid-ask spreads (Bidask), ii) Number of Traded CDS contracts (Contracts), andiii ) Net Notional Outstanding

Volume (Netvol). All these variables are country-specific and are availabe from DTCC. The set of of market

uncertainty-related variables includeiv) a local proxy of market volatility (Marketvol), as measured by the

absolute value of the weekly market index return, andv) a global indicator of default premium (Default),

characterized as the price spread between AAA and BBB rated US investment. This set of variables suffices

to explain a remarkably large proportion of variability, since price discrepancies turn out to be strongly related

to country-specific drivers which characterize liquidity. As discussed inthe robustness section, taking further

macroeconomic and financial variables into account, most of which are onlyavailable at the global level, does

not seem to improve results nor lead to qualitative differences in the main results. We discuss the variables
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used in the panel-data regressions in the remainder of this subsection.

All the variables in the liquidity group are strongly correlated and share a considerable degree of com-

monality. Although they all can be related to liquidity risk, they measure different facets of this magnitude

(Chordia et al., 2001). In particular,Bidask, the most popular indicator of illiquidity in security markets, is a

measure of the tightness of asset prices. According to the literature in market microstructure, bid-ask spreads

include two components. One is the compensation required by market-makers for inventory costs, clearing

fees, and/or monopoly profits. The second one results from a characteristic adverse-selection problem faced

by market-makers in a context of asymmetric information. It mainly represents the additional compensation

for the expected costs caused by informed-trading activity. Hence, in periods of greater price uncertainty in

which informed investors can profit from their superior information, bid-ask spreads tend to widen and lead

to greater transaction costs. Acharya and Johnson (2007) report evidence of informed-trading activity in the

CDS market, which furthermore leads equity markets in response to negativecredit news, suggesting that

price discovery for those events tends to happen in CDS markets. Consequently, we expect a positive relation

with mispricing, since liquidity providers can exit the market when transaction costs are high; see Longstaff

et al. (2005), Chen et al. (2007), and Tang and Yan (2008).

The variableContractsis a measure of market-wide trading activity and, therefore, can be deemedas

an indirect measure of liquidity; see Berg and Streitz (2012). In generalterms, trading activity induces

price volatility, so the number of trades has been often related to noise trading. Furthermore, Tang and Yan

(2008) use this variable to proxy for the overall inventory in the CDS market, which could also be related to

holding costs. In the inter-dealer market, inventory control may be a major concern for dealers under funding

constraints, as this may impair the capacity for dealers to take sides in additionalcontracts and thereby

affect the liquidity of the related contracts; see Brunnermeier and Pedersen (2009). Finally, Oehmke and

Zawadowsky (2013) argue that the illiquidity of the bond market increasesthe amount of CDSs outstanding,

since CDS contracts should be more heavily used when the underlying bondis illiquid – and thus hard or

expensive to trade. According to all these considerations, we should expect a positive relation with the noise

measure.

The variableNetvol reflects the net total amount exchanged in case of default. In contrast tothe gross

notional outstanding volume, which increases with every trade, the net notional volume adjusts the gross

notional amount for offsetting positions; see Berg and Streitz (2012). Inthis way, the net notional turns out

to be an excellent indicator of the overall amount of credit risk transfer inthe CDS market. As discussed

by Oehmke and Zawadowsky (2013), an intuitive way to interpret theNetvolvariable is to consider it as the

maximum amount of payments that need to be made between counterparties in the case of a credit event on

a particular reference entity. As in other derivative markets, such as thefutures market, entering offsetting

trades in the CDS markets is a more common way to reduce exposures than canceling an existing CDS con-

tract. Because arbitrageurs unwind positions during extreme circumstances, effective reductions in net traded
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volumes should be related to larger pricing errors. This variable could inversely proxy for the unobservable

holding costs (including, for example, the opportunity cost of capital, the opportunity cost of not receiving full

interest on short-sale proceeds, and idiosyncratic risk exposures),with arbitrageurs closing positions when

these costs increase excessively.

Together with these variables, we consider the country-specific variableMarketvol to capture market-

wide volatility in the local stock market. Market volatility is a latent factor particularly sensitive to the

information flow which subsumes information relative to collective expectations,environmental conditions,

and market sentiment. Consistent with the results reported in the previous section and the theoretical con-

siderations in Schleifer and Vishny (1997) and others, we expect volatilityto be a natural driver of the noise

measure. For instance, asset volatility is a key driver of default probabilities according to Merton (1974)

model. Accordingly, larger levels of volatility lead to greater pricing errors.Additionally, the variableDe-

fault is a global proxy to control for default premium. This variable is calculated using the Moody’s bond

spread index for 3-5 year maturity bonds; see Hu et al. (2013). A greater default is naturally associated with

greater pricing errors.

5.2 Analysis of determinants

Let lnnoiseCDS,it denote the natural logarithm of the sample estimate of thenoiseCDS measure for thei-th

country at timet. We model the conditional mean of this process as a linear function of the state variables

building on a panel-data model specification. Acharya and Johnson (2007), Tang and Yan (2008), and Pires

et al. (2013) use a similar approach to identify the main determinants of CDS spreads, rather than CDS spread

pricing errors; see also Peltonen et al. (2013) and Chiaramonte and Casu (2013). The specification is similar

in spirit to the determinant models used, for instance, in Peña et al. (1999) and Deuskar et al. (2008), although

our approach builds on direct estimates of pricing errors. In particular,we consider the following regression

specification, referred to as Model I in the sequel,

lnnoiseCDS,it = α +φ lnBidaskit +β1 lnContractsit +β2 lnNetvolit

+ β3Marketvolatilityit +β4De f aultt +ηi + εit (10)

or, using a more convenient notation,

lnnoiseCDS,it = α +φ lnBidaskit +X′
it β +ηi + εit , (11)

whereηi represents country-specific effects that are constant over time but can vary across countries,θ =

(α ,φ ,β ′)′ , with β = (β1, ...,β4)
′ , denotes the vector of unknown parameters,εit is a disturbance assumed to

obey standard assumptions, andXit is a vector of explanatory variables defined implicitly.

Some brief comments follow. While bid-ask spreads are stationary series, thevectorXit includes strongly-
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persistent variables which may be driven by stochastic or deterministic trends, such as lnContracts, lnNetvol,

MarketvolatilityandDefault. In order to ensure that this feature does not impose any meaningful distortion

in the main conclusions from(11) , we will consider an alternative specification in which these variables

are differentiated. The log-transform is applied to reduce the effects ofoutliers and heteroskedasticity in

the series. Note that, as a result, the coefficients associated to regressors in logarithms can be interpreted as

the elasticity ofnoiseCDS,it with respect to the related variable. Finally, this specification does not include

gross volume, available in DTCC, because this variable has a correlation coefficient of 85% withContracts.

We exclude that variable to avoid colinearity-related concerns, noting thatContractsshows a greater sample

correlation to the dependent variable (36%), and a smaller correlation to theother explanatory variables than

gross contracts.

SinceXit is a strongly persistent vector process with high first-order autocorrelation coefficients, for the

sake of robustness, we consider an alternative specification to(11) in which persistent variables are plugged

in differences, namely,

lnnoiseCDS,it = α∗+φ ∗ lnBidaskit +∆X′
t β ∗+ηi +uit (12)

with ∆Xit = Xit −Xit−1. Since bid-ask spreads and the dependent variable are stationary, theyare left in levels.

The resultant model shall be referred to as Model II in the sequel.

The parameters that characterize equations(11) and(12) are estimated using three different procedures

aiming to control for cluster errors, unobservable individual heterogeneity and endogeneity. In particular,

we first consider pooled time-series cross-sectional regressions with two-way cluster-robust standard errors

accounting for country and week clusters. This methodology allows us to carry out statistical inference which

is robust to fairly general simultaneous dependences of unknown formin both the cross-sectional and time-

series dimensions of the panel; see Petersen (2009), Gow et al. (2010), Cameron et al. (2011) and Thompson

(2011). Furthermore, this methodology seems particularly useful in the empirical context of this paper,

characterized by a panel with a larger number of time-series observationsthan individuals, because we can

readily control for unobservable heterogeneity using individual dummiesto estimate the coefficientsηi , since

the Haussman test largely favors fixed-effect over random errors.Second, consistent with model specification

testing, and as is common in the related literature, we consider fixed-effects panel-data regressions with robust

errors to autocorrelation and heteroskedasticity.10 The resultant estimates are remarkably similar to those

obtained under the first approach. Lastly, we consider instrumental variables in the fixed-effects panel data,

using a single lag of the variables as an instrument in order to mitigate concernsrelated to endogeneity.

In addition, we analyze the predictive ability of the variables in Model I and II to forecast the dependent

10Panel data with random errors can be seen as a more general specification than fixed errors. We implemented both approaches,
noticing no qualitative difference in the main conclusions discussed below.However, since the Haussman test largely favors fixed-
effect over random errors in our sample, we report and discuss theresultant estimates from this model.
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variable. To this end, we regress lnnoiseCDS,it on lagged values of all the right-hand side variables in equations

(11) and(12), i.e., we consider predictive panel-data regressions. We adopt this approach for two main rea-

sons. First, the analysis on the parameters estimates from these regressions allows us to determine whether the

state variables are useful to predict price discrepancies given the setof available information. Second, since

the dependent variable is regressed on predetermined variables in this analysis, endogeneity can no longer be

a serious concern. Of course, this form of robustness comes at the expense that parameter significance may

be considerably weakened , but the comparative analysis between contemporaneous and predictive regres-

sions allows us to determine whether endogeneity introduce significant biases. Consequently, and paralleling

equations (11) and (12), we consider the following predictive specifications

lnnoiseCDS,it = αl +φl lnBidaskit−1+X′
it−1βl +ηi +vit (13)

and

lnnoiseCDS,it = α∗
l +φ ∗

l lnBidaskit−1+∆X′
t−1β ∗

l +ηi +wit (14)

with θl =
(
αl ,δl ,β ′

l

)′
andθ ∗

l =
(
α∗

l ,δ
∗
l ,β

∗′
l

)′
denoting the main parametes of interest, andvit andwit being

random disturbances. For ease of exposition, we shall present and discuss the parameter estimates from the

two-way cluster methodology with country dummies and robust standard errors to unknown heteroskedas-

ticity and correlation. Because(13) and(14) are trivial variations of Models I and II, respectively, we shall

simply refer to this approach as predictive two-way cluster when reportingthe main results.

5.3 Main results

Table 8 reports the main outcomes from the regression analysis (estimated parameters, robustp-values of the

t-statistic for individual significance, andR2), using the different estimation techniques discussed previously

and the model specifications (11) to (14). Let us first discuss the resultsfor Model I and its predictive

variation, corresponding to equation (11) and(13) , respectively. These are reported in the bottom part of

the table (Panel A). Independently of the estimation technique, the results show that larger bid-ask spreads,

greater trading activity, and greater netting activity within counterparties are systematically related to greater

pricing errors. A relative increment of 100 basis points in the bid-ask spread leads, on average, to an increment

of nearly 50 basis points in the dispersion of pricing error, everything else being equal. Similarly, the noise

measure has a elasticity coefficient of 0.58 and−0.32 with respect to the number of contracts and net notional

CDS positions, respectively. These estimates are both statistically and economically significant, and confirm

a sheer influence of liquidity-related factors on pricing errors in the CDS markets. Owing to the importance

of this result, we shall discuss its implications in detail later on, after presentingthe remaining estimates.

[TABLE 8 ABOUT HERE]
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As expected, the proxy variables for local market volatility in stock markets,used mainly as controls in

our analysis, are positively related to price discrepancies in the CDS markets. The evidence of statistical

significance of these coefficients is marginal in the contemporaneous regression, and non-significant in the

predictive model. While using a robust, but noisy proxy of the unobservable volatility based on absolute-

valued weekly returns is likely to increase the standard error of the resultant estimate, the apparent lack of

significance is actually related to the (positive) correlation that volatility showswith theBidaskvariable. If

the latter is omitted from the analysis (results not presented for the sake of saving space), then the coefficient

on market volatility is positive and strongly significant in all cases, suggesting theBidaskpartially overrides

the information conveyed by volatility. Similarly,Default is positively related to the noise measure, as ex-

pected, but the statistical evidence supporting the inclusion of this variable isconsiderably weaker. The tests

of significance cannot be rejected in most cases. This result probably indicates that the potential informa-

tion conveyed by this variable is subsumed in the remaining variables, which is not particularly surprising in

view thatDefault is a global variable. The analysis on the predictive regression shows that illiquidity-related

variables can be used as short-term predictors of future mispricing. Thestrong similarity in the main conclu-

sions shows that endogeneity does not cause meaningful distortions on the least-squares based estimates of

model (11). Finally, the analysis of theR2 shows that the models are extremely parsimonious, since a reduced

number of country-specific variables, mainly related to market-wide illiquidity, are able to achieve aR2 of

approximately 95% of price discrepancies.

The main results from the estimation of Model II are reported in the bottom partof Table 8, see Panel B.

Recall that the only difference with respect to the previous models is that thedependent variable is regressed

onBidaskit and∆Xit in the contemporaneous regression, and onBidaskit−1 and∆Xit−1 in the predictive regres-

sion. The resultant estimates show that relative increments in bid-ask spreads, as well as relative reduction

in net notional CDS volumes, can be consistently related to larger dispersionin the CDS curve. Once more,

Bidaskturns out to be a particularly significant determinant. However,Netvoltends to be marginally signifi-

cant in this context. The variablesContractsandDefaultdo not seem to play any role, and market volatility is

positively but not significantly related to the noise measure. As in Panel A, this evidence is robust to different

estimation techniques and remains valid even when considering lagged valuesof these state variables in a

predictive regression.

In short, the price discrepancies of observed CDS spreads with respect to the theoretical prices implied

by the PS model do significantly covariate with state variables that characterize illiquidity in the CDS market.

This relation is so strong that illiquidity-related variables can be used even asreliable predictors of mispricing

in the short-term. The evidence is particularly significant for bid-ask spreads, as generally expected from

the theoretical and empirical considerations in the previous literature. In addition, our analysis reveals a

significant relation with outstanding net volumes, a variable at our disposalwhich has not been used in

previous literature. This evidence merits a special mention because a significant relation of CDS pricing
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errors withNetvol reinforces the empirical suitability of the arbitrage-capital hypothesis in Schleifer and

Vishny (1997). The estimates of the elasticity coefficient on this variable arenegative and highly significant

in most cases, implying that a relative reduction in net volume is systematically associated with increments in

the variability of pricing errors. This result is particularly meaningful because reductions in net volume can

be interpreted as increments of offsetting transactions, which is consistentwith a greater number of market

participants unwinding positions, particularly, during times of distress. Hence, consistent with the theoretical

claims in Schleifer and Vishny (1997), larger price discrepancies can becaused by the temporary exit of

market participants.

This result provides empirical support to the generality of the measure proposed by Hu et al. (2013) in

the context of CDS markets, as it essentially agrees with the main conclusions drawn by these authors in the

context of Treasury bonds. Finally, it should be noted that the overall evidence reported in this section strongly

suggests that single-factor intensity models, distinctively intended to capturedefault risk, may systematically

lead to large pricing errors in a distress scenario characterized by high illiquidity risk; as these neglect the

influence of this risk-factor. As in the case of the BS model discussed in Peña et al. (1999), extensions of this

models that do not accommodate liquidity risk may lead to substantial pricing errors.

6 Robustness checks

This sections shows the results from different robustness checks grouped into two main categories. On the one

hand, we discuss the general suitability of the model specification against different considerations. We firstly

analyze if the overall evidence can be extended to both AE and EE, or if there are heterogeneous patterns

attending to creditworthiness. We also discuss if the estimated models could be improved significantly by

adding further variables, or if the results are robust to alternative definitions of the main proxy variables

involved in the analysis. On the other hand, we analyze whether using alternative pricing models could lead

to substantial changes in the main qualitative results discussed previously. The main conclusion from this

analysis is that the overall evidence is robust to all these considerations.

6.1 Model specification

A) Differences between advanced and emerging economies

Paralleling the analysis in the main section, Table 9 reports the main outcomes fromthe panel-data anal-

ysis on the subsamples of emerging countries (Panel A) and advanced economies (Panel B). The main aim

of this analysis is to determine if the conclusions apply uniformly over all the countries, of if there are dif-

ferences attending to this consideration. For conciseness, we display theresults corresponding to Model II,

in which the dependent variable is regressed againstBidaskand∆Xit . The main qualitative conclusions are
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fairly similar for the remaining models, but we report the results for a specification that tends to yield more

conservative results.

[TABLE 9 ABOUT HERE]

For both groups of countries, the bid-ask spread variable is always positive and strongly significant,

independently of the estimation technique. Interestingly, the coefficient on net volume,Netvol, is negative and

remains highly significant in statistical terms, but only for the countries in the advanced economies groups

(see Panel B). The estimates for emerging markets are highly non-significant. In our view, this evidence

shows important differences in CDS pricing in advanced and emerging contracts during the sample period

analyzed which is consistent with the fragmentation hypothesis in the CDS market suggested by Goldstein

et al. (2013). CDS are contracts used essentially for either speculativeor hedging purposes. The evidence that

relative changes in net volume is not significant on the group of emerging markets over the period analyzed

suggests that trading activity on these markets is primarily intended for hedgingpurposes. Conversely, the

evidence of illiquidity-related mispricing in the CDS written on the AE group, mostly composed of European

countries, would be consistent with speculative activity. This interpretationis also consistent with the view

of the European banking crisis as a ‘carry trade’ behavior of banks;see Acharya and Steffen (2012).

B) Additional explanatory variables.

Together with the set of variables discussed previously, we included a number of additional explanatory

variables. Most of these variables are global, i.e., variables that are common for all the countries, and that

reflect major trends in the global economy. These variables includei) the 1-day LIBOR, since this represents

the unsecured rate at which banks lend to each other and it is sensitive to default conditions;ii) the slope

of the US term structure of interest rates, calculated as the difference between the 10- and 2- year constant

maturity Treasury bond yields;iii ) the noise measure of Hu et al. (2013), representative of illiquidity proxy

of the US sovereign bond market;iv) the local stock market index returns, as a measure of short-term market

performance;v) the spread between the three-month LIBOR rate and the Overnight Index Swap rates, as a

proxy of counterparty risk, since this variable captures the market expectations of future official interest rates

set by central banks, and aggregates the perceptions of counterparty risk in credit markets. There exists a

strong degree of correlation between these variables. Not surprisingly, therefore, in the estimation of Model I

and II extended with these variables, most of the related coefficients werenot significant, which suggests that

a simpler model that mainly exploits local information is parsimonious enough and subsumes all the relevant

information to explain systematic trends in CDS mispricing. The main results, underlining the crucial role

played by illiquidity-related variables on price biases, remain unaltered. We do not present these results for

the sake of saving space, noting that they are available upon request.

C) Financial distress-related deterministic indicators.
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We include time dummies signaling the occurrence of major sovereign events in thesample, such as the

Greek and Ireland bailouts, and the downgrade of Portugal. The main aim isto isolate the estimates of the

main parameters from the influence of these events. To this end, we considered an extended model with

dummies in the unconditional mean and cross-effects with all the local variables in our model. The main

qualitative results from the analysis do not differ substantially from those discussed previously, suggesting

that bid-ask spreads and net volumes are major drivers and even predictors of the noise measure in the sample.

Interestingly in this analysis, some variables such as trading activity and default seem to gain statistical

significance, with the crossing-effects being particularly significant forthe bid-ask spreads, net volumes and

default in nearly all model specifications. As a further check, we repeated this exercise by extending the

time window effect of the dummies until one, two, three and four weeks after the event, noting that the main

qualitative conclusions are essentially the same as those reported previously.

D) Definitions of proxy variables.

We also analyzed the sensitivity of the results to the way in which the main proxy variables were con-

structed. In particular, the bid-ask is defined as the 5-year maturity bid-ask. This particular choice was

motivated by a criterion of homogeneity, since the trading-related variables facilitated by DTCC mainly refer

to this maturity. Nevertheless, since bid-ask spreads are available at different maturities, we analyzed the

sensitivity of the results to this consideration, considering bid-ask spreads at any of the available maturities

and even a sample average. Additionally, we consider a different proxyfor market-wide volatility in the stock

market, using a measure of realized volatility defined as the weekly sum of absolute-valued daily returns. The

evidence discussed previously is not affected in any significant way bythese considerations.

6.2 Alternative pricing models

The main results discussed in the previous sections build on the PS pricing model. Other pricing approaches

are possible, since the definitive functional form of the default process λQ remains an open question in this

literature. Consequently, we consider two alternative pricing models, namely, a quadratic intensity function

(QIF) suggested by Houweling and Vorst (2005), and the semi-parametric (NS) model suggested by Nelson

and Siegel (1987). Like PS, these alternative approaches rely on CDSspreads to directly measure the credit

risk attributable to default risk and do not explicitly accommodate other risk factors, such as liquidity risk.

The main methodological difference, however, is that the theoretical term-structure is characterized on cross-

sectional estimates at a particular date, whereas PS uses maximum-likelihood in the time-series context. The

advantage is that QIF and NS build on flexible semi-parametric specifications that do not impose distributional

assumptions on the data. This feature allows us to ensure that the main qualitative conclusions are not driven

by the assumptions implied in Pan and Singleton (2008).

The QIF approach builds on a second-order degree polynomial to modelthe term-structure of the risk-
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neutral default intensity at maturitymτ at timet, namely,

λQ
t (mτ) = lt +stmτ +ctm

2
τ , (15)

where the parameterslt , st andct capture the level, slope and curvature of the default term structure, respec-

tively, with mτ denoting the time to maturity. Houweling and Vorst (2005) argue that this approach works

reasonably in practice. The main advantage of this specification lies on its methodological tractability, but

some readers may deem it as excessively simplistic.

The NS approach is a more sophisticated pricing model that attempts to capture the default spread term

structure at timet by parsimoniously fitting a smooth curve to the cross-sectional data, namely,

λQ
t (mτ) = ξ1t +ξ2t

1−e−γtmτ

γtmτ
+ξ3t

1−e−γtmτ

γtmτ
−exp(−γtmτ) , (16)

where the parameters(ξ1t ,ξ2t ,γt)
′ are latent dynamic factors that admit a precise economic interpretation.

In particular,ξ1t can be viewed as the long-term mean of the default intensity;ξ2t is related to the slope of

the spread term-structure, since−ξ2t = λQ
t (∞)−λQ

t (0); ξ3t is closely related to the curvature of the shape.

Finally, γt is related to the convexity of the curve and controls the position, magnitude anddirection of the

hump of the spread curve. Remarkably, the NS approach provides the corresponding default rate for a con-

tinuous of maturities, so additional interpolation is not necessary. Moreover, this modeling approach avoids

the over-parametrization, allowing for monotonically increasing or decreasing and hump shaped default term

curves. Jankowitsch et al. (2008) set an extensive comparison of thepricing properties in the bond market for

several parametrizations of the default intensity, concluding that the Nelson and Siegel (1987) specification

turned out to be optimal.

Recalling that the (annualized) price of a CDS contract for maturitym at timet obeys(6) , we can use

the following discretized version of this formula for computing the spreads under both the QIF and NS

approaches,

1
4

4m

∑
j=1

e−
j
4(rt+λQ

t ( j))CDSt(m) = (1−RQ)
4m

∑
j=1

e−
j
4 rt

[
e−

( j−1)
4 λQ

t ( j)−e−
j
4λQ

t ( j)
]
, (17)

whereλQ
t (mτ) denotes the risk-neutral default intensity at maturitymτ , andRQ is the recovery rate. Consis-

tent with previous literature, we set the risk-neutral recovery rate to 40%; see, for instance, Berndt and Obreja

(2010). We also assume a constant default intensityλQ
t , which results inCDS∗t (mτ)≈ λQ

t (mτ)(1−RQ). The

parameters(lt ,st ,ct)
′ and(ξ1t ,ξ2t ,ξ3t ,γt)

′ that characterize the QIF and NS models are estimated using linear

and non-linear least squares, respectively, given the observable curveCDSt ; see, for instance, Okane and

Turnbull (2003) and Houweling and Vorst (2005). Sinceγt in the NS model should be positive in order to

assure convergence to the long-term valueξ1t , we impose the constraintsξ1t > 0, ξ1t + ξ2t > 0 andγt > 0
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in the numerical optimization of the objective loss-function of this model. Given the resultant estimates, it

is straightforward to compute theoretical term-structure CDS prices and, hence, determine the noise measure

with respect to the observed pricesCDSt .

[FIGURE 5 ABOUT HERE]

Figure 5 shows the time series of the cross-country median of the theoreticalCDS spreads implied by the

three different pricing models considered in this paper. For comparativepurposes, the figure also reports the

qq-plots of these series in logarithms. Clearly, all these model-implied CDS spreads tend to exhibit similar

time series features on average. The pairwise correlation between the model-implied prices from PS and those

from QIF and NS are about 76% and 74%, respectively. Similarly, the correlation between the theoretical

prices generated with the QIF and NS models is nearly 80%. Note that the CDS spreads implied by PS and

NS have a similar level and tend to overlap, but the latter display a considerably degree of additional volatility.

Theoretical prices from the QIF model exhibit similar time series properties asthe other two methodologies,

but the average is downward shifted, i.e., prices are systematically smaller.

[TABLE 10 ABOUT HERE]

Table 10 reports the main results from the analysis of determinants of the QIF-and NS-based noise

measures. For ease of exposition, we report the estimates of Table 10 noting that the dependent variable

lnnoiseCDS,it is now computed according to the residuals of either the QIF or the NS models. Not sur-

prisingly, the strong correlation between the theoretical prices generatedby these pricing methodologies is

consistent with the main qualitative evidence discussed in Section 5.2, and it is not affected in qualitative

terms. Independently of the pricing framework, all the different proxy variables for market-wide liquidity in

the CDS market exhibit the expected signs and are statistically significant. Broadly speaking, the estimates in

the QIF-implied noise equation are closer to those reported previously, as should be expected in view of the

correlation between these series. The main conclusion, therefore, is thatpricing errors from default single-

factor models can be consistently related to market-wide illiquidity variables as well as other indicators of

financial distress.

7 Concluding remarks

The term structure of fixed-income derivative products must be consistently priced across maturities under the

absence of arbitrage opportunities. In practice, however, temporary discrepancies between observed prices

and theoretical values can arise as a consequence of market frictions such as illiquidity. While the extant

literature has documented both theoretically and empirically the sheer influenceof illiquidity-related costs

on arbitrage-free option pricing models, the evidence for other derivative markets is generally scarce, and
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plainly nonexistent for CDS. The main objective of this paper has been to contribute to this literature by

documenting the existence of systematic illiquidity-related patterns in the pricing errors implied by some of

the most popular pricing models used to value CDS spreads. To this end, we have implemented different

panel-data estimation techniques on a broad sample of sovereign CDS in 16 countries.

The main evidence in this paper is remarkably robust and suggests that price discrepancies in CDS mar-

kets can systematically be related to illiquidity factors. Pricing errors tend to be greater during periods of

significant distress, such as the collapse of Lehman Brothers or the European debt crisis, as expected under

the general arbitrage capital hypothesis. The panel-data analysis identifies bid-ask spreads and a higher level

of offsetting transactions as key economic determinants, and even predictors, of greater pricing errors. The

overall evidence is largely consistent with the hypothesis that arbitrage capital exits the market during times

of distress, causing assets to be traded at prices significantly differentto their fundamental value. Accord-

ingly, theoretical pricing models that fail to properly accommodate the additional compensation required for

market maker risks can systematically lead to pricing errors in this context.

This evidence is important for different agents, including investors who trade in the CDS market and

supervisory organisms that use CDS transaction prices as reliable indicators of the underlying economic con-

ditions. On the one hand, most investors trade in the CDS market for either speculative or hedging purposes.

For both types of agents, the overall evidence that state-of-the-art CDS pricing models can generate prices

that systematically depart from real prices is particularly relevant for its economic implications. Investment

decisions based on the theoretical prices generated by these models may lead to suboptimal results in a

distress scenario. On the other hand, regulators and supervisory organisms often closely monitor financial

and economic time series looking for signals that may anticipate a financial weakening. The CDS market

provides natural indicators for this end, since CDS spreads convey information on market expectations of

creditworthiness. However, if CDS spreads are wrongly assumed to solely reflect default risk, the severity of

the underlying market conditions could be largely overestimated, particularly, during periods of distress. In

this context, transaction prices may no longer reflect fundamental values,but also include large illiquidity-

risk premiums, as directly suggested by the recent literature on the field, andconfirmed from the empirical

findings in this paper. The case of peripheral European countries in themidst of the European sovereign crisis

perhaps illustrates this point accurately, since sovereign CDS contracts were traded at excessively high prices

to solely reflect credit default risk premiums.
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Table 1: Descriptive statistics of sovereign CDS spreads

1 Year 5 Year 10 Year
Country Mean Median Std. Mean Median Std. Mean Median Std. Obs.
Argentina 855.99 417.60 1213.68 964.41 741.90 897.20 971.81 752.33 818.27 358
Australia 25.28 23.26 21.34 44.44 44.12 33.31 52.83 49.86 38.42 358
Brazil 66.68 54.89 58.44 145.45 125.15 68.66 183.24 159.82 65.94 358
China 36.40 28.02 34.56 75.08 70.66 52.20 91.33 85.87 56.96 358
France 28.43 18.64 34.56 58.68 36.59 63.73 67.95 40.01 72.10358
Germany 13.70 10.12 14.09 33.20 30.34 30.68 41.87 32.98 38.59 358
Indonesia 115.81 69.65 135.04 220.09 174.77 146.64 267.99 227.39 134.62 358
Italy 105.96 51.38 136.00 148.06 99.36 157.39 152.20 103.43149.60 358
Japan 18.74 13.78 18.48 51.68 49.84 40.56 67.74 61.69 53.23 358
Mexico 65.23 43.25 70.05 126.82 113.81 83.61 152.74 144.02 82.71 358
Saudi Arabia 80.46 78.08 33.46 115.66 105.33 52.18 126.61 116.90 54.03 228
South Africa 76.68 50.83 95.17 145.58 140.81 97.30 168.30 162.69 90.91 358
South Korea 72.14 45.62 90.36 107.71 97.71 91.43 122.58 115.01 89.50 358
Spain 115.71 61.41 130.30 154.04 93.08 163.13 153.47 94.36 154.73 358
UK 30.17 25.57 22.86 63.16 65.95 30.81 72.70 77.96 31.32 261
US 18.72 19.23 13.90 38.34 40.25 16.72 40.09 42.00 22.50 334

Summary of the main descriptive statistics of CDS spreads inlevels for each country. Maturities are 1-, 5- and 10-year,
respectively. Sample comprises from January 2006 to November 2012, with the exception of Saudi Arabia, the UK and
the US, which covers from December 2007 to November 2012. Data frequency is weekly.
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Table 2: Trading activity statistics

Absolute measures (in differences) Relative measures (in levels)
Contracts Gross vol. (USD mill.) Net vol. (USD mill.) Contracts (%) Gross vol. (%) Net vol. (%)

Country Mean Std. Mean Std. Mean Std. Mean Std. Mean Std. MeanStd. Obs.
Argentina -8.10 139.49 -65.41 1131.25 -4.67 88.93 7.68 2.05 4.59 1.10 1.72 0.48 208
Australia 19.52 57.22 199.93 490.71 22.82 91.42 1.85 1.16 1.21 0.70 1.99 1.17 185
Brazil -8.47 332.03 41.30 3331.37 27.03 287.98 15.80 3.90 13.56 2.16 11.55 0.61 208
China 30.75 143.53 267.06 1132.89 35.12 146.53 5.66 1.34 3.45 0.58 3.84 1.43 208
France 33.45 219.88 739.41 3401.11 58.43 388.13 4.57 2.19 6.74 2.02 11.27 2.54 208
Germany 24.66 114.78 548.28 2375.90 34.98 277.43 3.48 1.04 7.05 0.80 12.05 0.77 208
Indonesia 6.30 142.31 49.67 1056.35 6.57 76.64 6.52 1.25 3.22 0.64 1.98 0.26 208
Italy 45.14 309.60 1123.34 6169.96 16.49 473.74 9.59 1.14 22.28 1.14 18.95 4.54 208
Japan 35.61 173.52 345.55 1593.84 46.36 118.10 4.61 2.52 3.14 1.33 4.46 1.66 208
Mexico 10.54 185.17 212.91 1656.96 23.71 145.28 12.77 2.76 9.65 1.22 5.87 0.55 208
South Africa 10.96 92.52 98.21 670.39 1.58 78.67 6.37 1.19 3.60 0.53 1.87 0.44 208
South Korea 21.05 238.28 152.41 2063.22 6.86 149.90 9.43 1.58 5.53 1.20 3.68 0.93 208
Spain 38.53 320.06 697.09 5201.09 -8.15 334.01 7.03 1.61 10.76 0.95 12.03 2.24 208
UK 20.42 100.69 280.22 1357.33 31.60 194.12 3.95 1.57 3.96 0.98 6.48 1.92 208
US 4.09 39.39 83.46 640.63 10.74 127.24 0.90 0.40 1.39 0.37 2.49 0.52 208

Summary of the main descriptive statistics of CDS volumes inincrements for each country. Relative measure includes theratio of each country value with
respect to the remaining G20 countries. Sample comprises from November 2008 to November 2012. Data frequency is weekly.
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Table 3: Liquidity and veracity index of CDS spreads

Bid-ask spread Veracity index
1-Year 5-Year 10-Year All maturities

Country Mean Median Std. Mean Median Std. Mean Median Std. Mean Median Std. Obs.
Argentina 79.03 28.82 139.30 36.75 12.48 83.41 39.37 15.00 86.89 1.71 1.80 0.22 358
Australia 6.63 5.63 5.39 4.81 3.39 3.59 5.03 3.96 3.16 1.91 1.90 0.03 358
Brazil 7.01 5.01 5.75 3.54 2.58 2.93 5.03 4.00 2.73 1.71 1.80 0.21 358
China 6.94 5.20 6.77 4.64 3.90 3.91 5.00 4.24 2.88 1.84 1.90 0.14 358
France 3.49 3.06 2.86 3.11 2.92 1.74 4.50 3.29 2.70 1.83 1.80 0.09 358
Germany 2.60 2.00 2.38 2.65 2.62 1.32 3.55 3.12 2.16 1.85 1.800.09 358
Indonesia 18.11 10.54 20.55 9.07 5.18 10.40 10.64 8.06 9.69 1.78 1.90 0.21 358
Italy 9.44 6.70 9.36 4.52 3.70 3.31 6.72 4.41 4.66 1.80 1.80 0.12 358
Japan 3.88 2.00 4.66 3.88 3.00 2.40 4.47 3.58 2.63 1.92 1.90 0.07 358
Mexico 7.28 5.67 5.64 3.77 3.00 2.59 4.96 4.00 2.53 1.77 1.80 0.17 358
Saudi Arabia 24.83 16.65 21.05 15.58 10.01 13.58 13.52 9.36 10.31 1.92 1.90 0.04 228
South Africa 13.68 7.01 17.75 6.45 4.32 7.55 8.03 5.19 7.03 1.77 1.80 0.17 358
South Korea 10.01 6.23 12.09 5.09 4.00 4.51 5.31 4.29 3.50 1.77 1.80 0.17 358
Spain 9.56 7.41 10.03 4.87 3.71 3.04 6.31 4.48 5.37 2.05 1.80 0.49 358
UK 4.98 3.82 4.14 4.20 3.73 2.12 5.03 4.13 2.69 1.82 1.80 0.06 261
US 6.20 5.90 3.21 5.15 4.94 2.08 5.56 4.90 2.53 1.85 1.80 0.06 334

Descriptive statistics of bid-ask spreads and veracity index for available G20 countries. Maturities for bid-ask spreads are 1-, 5- and 10-year, respectively.
Veracity index is computed across all available maturities. Sample comprises from January 2006 to November 2012, with the exception of Saudi Arabia, the
UK and the US, which covers from December 2007 to November 2012. Data frequency is weekly.

38



Table 4: Maximum likelihood estimates

Firm κQ κQθQ σ κP κPθP σG RQ LogLk
Argentina 0.0977 -0.3111 1.1515 0.4100 -1.3947 0.0158 0.0100 10055.49

(0.0109) (0.0345) (0.0054) (0.4271) (1.4933) (0.0000) (0.0032)
Australia -0.1576 0.5665 0.8519 2.0488 -9.7753 0.0006 0.6568 14361.35

(0.0055) (0.0253) (0.0086) (1.0181) (4.9049) (0.0000) (0.0246)
Brazil -0.0372 0.3160 0.9967 1.4271 -6.0946 0.0015 0.7120 18082.42

(0.0046) (0.0235) (0.0058) (0.5463) (2.2478) (0.0000) (0.0065)
China -0.0725 0.2836 1.0452 0.6028 -3.2016 0.0010 0.6741 19873.02

(0.0051) (0.0270) (0.0048) (0.5508) (2.7026) (0.0000) (0.0124)
France -0.3077 1.2479 0.7489 0.7476 -3.9226 0.0008 0.7792 20549.94

(0.0044) (0.0180) (0.0026) (0.2650) (1.4954) (0.0000) (0.0050)
Germany -0.3294 1.4366 0.7977 0.3122 -1.8284 0.0006 0.7966 21590.77

(0.0049) (0.0226) (0.0046) (0.4622) (2.6673) (0.0000) (0.0075)
Indonesia 0.0262 -0.0780 1.0802 0.8218 -3.6363 0.0026 0.3690 16292.05

(0.0029) (0.0152) (0.0064) (0.5350) (2.2836) (0.0000) (0.0129)
Italy -0.1439 0.4858 0.8729 0.0935 -0.3948 0.0016 0.7069 18222.76

(0.0065) (0.0231) (0.0044) (0.3268) (1.2389) (0.0000) (0.0049)
Japan -0.2444 1.0591 1.0024 0.6477 -3.9007 0.0008 0.4715 20608.46

(0.0037) (0.0181) (0.0060) (0.5088) (3.3369) (0.0000) (0.0139)
Mexico -0.0637 0.3664 0.9337 0.1722 -0.8381 0.0009 0.7454 19782.02

(0.0031) (0.0140) (0.0050) (0.3099) (1.2314) (0.0000) (0.0030)
Saudi Arabia -0.1952 0.6712 0.6739 0.9137 -3.8040 0.0007 0.5927 13230.57

(0.0027) (0.0093) (0.0068) (1.0620) (4.2584) (0.0000) (0.0124)
South Africa 0.2871 -1.2749 1.9191 0.5267 -2.9677 0.0012 0.7046 18922.40

(0.0061) (0.0393) (0.0076) (0.5213) (2.6152) (0.0000) (0.0061)
South Korea -0.0087 0.1557 0.8793 0.3607 -1.6318 0.0011 0.8246 19178.13

(0.0017) (0.0066) (0.0019) (0.2136) (0.7573) (0.0000) (0.0015)
Spain -0.0720 0.0833 0.8929 0.1361 -0.8052 0.0014 0.0335 18550.07

(0.0018) (0.0063) (0.0039) (0.1944) (1.1928) (0.0000) (0.0066)
UK 0.2227 -1.2409 1.7872 0.4324 -2.8469 0.0008 0.7695 14987.91

(0.0236) (0.1769) (0.0105) (0.8604) (4.8489) (0.0000) (0.0350)
US 0.0176 -0.1397 0.8465 0.2009 -1.1237 0.0005 0.7390 15755.24

(0.0028) (0.0151) (0.0047) (0.3980) (2.1537) (0.0000) (0.0138)

Maximum likelihood estimates for the Pan and Singleton (2008) model. Standard errors are in parenthesis.κQ, θQ andσQ denote
the mean-reversion, long-run mean and instantaneous volatility of default intensity processλQ under theQ probability measure,
respectively. Similar convention applies for the parameters of the objective measureP. σM is the standard deviation mispricing
errors, andRQ the recovery rate. LogLk is the log-likelihood. Data frequency is weekly and it comprises from January 2006 to
November 2012, with the exception of Saudi Arabia, the UK and the US, which covers from December 2007 to November 2012.
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Table 5: Descriptive statistics of the noise measure

Percentiles
Country Mean Median Std Min Max 5% 95% N
Argentina 85.70 43.87 136.40 4.41 1111.39 7.84 472.10 358
Australia 4.42 2.66 4.67 0.33 21.44 1.28 17.47 244
Brazil 12.11 10.78 9.46 1.06 57.31 2.54 32.18 358
China 7.44 4.96 6.10 0.40 27.90 1.22 18.76 358
France 5.80 3.80 5.89 0.42 28.09 1.18 19.51 358
Germany 4.52 3.11 4.37 0.37 18.75 0.61 15.08 358
Indonesia 17.79 12.47 19.06 1.39 219.45 4.77 59.08 358
Italy 11.37 5.85 11.13 1.62 66.65 2.88 59.08 358
Japan 5.80 4.66 4.91 0.41 26.19 0.82 15.18 358
Mexico 7.87 6.68 4.93 1.49 56.84 2.36 16.25 358
Saudi Arabia 5.58 4.92 3.91 0.85 18.24 1.05 14.62 228
South Africa 9.91 7.90 7.01 2.02 56.34 3.01 21.92 358
South Korea 9.48 7.80 6.45 2.21 43.66 2.97 21.58 358
Spain 10.11 6.33 10.19 1.09 62.43 1.60 30.39 358
UK 6.84 5.33 3.83 1.40 17.75 2.52 13.65 261
US 4.57 3.87 2.73 0.53 17.22 1.12 10.52 257
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Table 6: Contribution of maturities to the noise measure

Maturity (years) Rank
Country 1 2 3 4 6 7 8 9 10 mean median std
Argentina 59.20 [64.57] 39.44 [43.48] 26.28 [25.96] 12.86 [10.96] 9.63 [ 8.29] 16.62 [14.41] 20.82 [19.09] 23.33 [21.70] 25.03 [22.06] 1 1 1

(25.81) (17.12) (14.46) ( 8.64) ( 5.99) (10.94) (13.58) (15.45) (17.18)
Australia 32.54 [30.35] 33.99 [36.81] 29.68 [31.98] 18.34 [18.85] 19.84 [22.82] 29.79 [33.45] 35.43 [40.18] 35.42 [38.99] 36.84 [38.73] 10 8 1

(19.37) (13.36) (12.13) ( 5.16) ( 6.52) ( 8.81) (10.74) (13.34) (16.91)
Brazil 45.51 [46.10] 38.02 [39.11] 29.17 [29.16] 19.19 [18.09] 12.34 [12.82] 23.07 [23.98] 27.54 [30.13] 31.48 [34.35] 34.65 [37.58] 1 1 1

(20.02) (16.35) (15.08) ( 9.89) ( 5.44) ( 9.97) (11.48) (12.46) (15.00)
China 32.38 [34.97] 30.05 [31.72] 26.99 [25.91] 14.22 [14.35] 13.20 [13.62] 25.63 [25.53] 32.53 [34.76] 39.17 [42.11] 43.48 [42.66] 10 10 1

(20.41) (17.18) (17.10) ( 8.72) ( 4.65) ( 9.74) (13.62) (13.70) (15.45)
France 51.69 [56.95] 38.86 [40.00] 26.43 [26.19] 14.83 [15.18] 12.67 [12.14] 21.10 [20.01] 26.06 [25.56] 29.84 [30.26] 33.23 [34.31] 1 1 1

(23.13) (13.49) (13.11) ( 7.31) ( 6.33) (10.28) (11.89) (13.07) (14.98)
Germany 49.90 [48.16] 34.25 [36.11] 27.66 [27.80] 16.30 [16.30] 13.11 [11.94] 20.94 [20.13] 26.09 [27.57] 30.20 [31.35] 34.33 [36.45] 1 1 1

(24.23) (14.19) (13.62) ( 8.32) ( 8.97) (12.58) (13.34) (13.56) (16.91)
Indonesia 49.28 [52.52] 39.09 [42.88] 32.23 [33.74] 16.00 [15.08] 11.43 [10.67] 19.19 [18.37] 23.36 [24.69] 27.70 [29.56] 33.67 [35.59] 1 1 1

(20.69) (15.39) (14.46) (10.57) ( 5.71) (11.18) (12.34) (14.60) (17.32)
Italy 56.68 [62.50] 38.35 [40.10] 23.07 [20.12] 10.55 [ 9.43] 9.94 [ 9.05] 15.84 [15.53] 20.30 [17.83] 25.74 [19.83] 31.62 [25.89] 1 1 1

(25.15) (15.63) (12.34) ( 6.89) ( 7.21) (11.01) (13.82) (17.64) (22.43)
Japan 50.76 [51.81] 31.10 [32.09] 23.50 [24.07] 15.25 [14.62] 13.70 [12.44] 20.94 [20.40] 26.14 [27.52] 30.73 [33.80] 36.03 [39.31] 1 1 1

(23.04) (17.87) (14.59) (10.50) ( 9.37) (12.80) (13.69) (14.66) (17.26)
Mexico 54.74 [60.15] 31.38 [33.05] 22.05 [20.11] 12.71 [12.02] 10.24 [10.10] 18.80 [17.59] 24.04 [24.48] 29.20 [29.36] 37.42 [39.57] 1 1 1

(23.02) (18.31) (15.47) ( 8.80) ( 6.15) (12.05) (13.29) (14.58) (18.26)
Saudi Arabia 45.83 [49.00] 42.25 [51.60] 29.08 [30.30] 14.18 [14.85] 14.26 [11.00] 21.43 [ 8.74] 23.37 [15.14] 23.34 [23.76] 26.08 [30.92] 1 2 1

(23.54) (20.42) (14.94) ( 6.90) (12.41) (20.54) (17.26) (14.96) (17.48)
South Africa 51.74 [53.49] 43.14 [44.69] 28.56 [29.00] 12.90 [12.43] 10.93 [10.94] 18.72 [18.02] 23.76 [24.78] 27.86 [29.52] 32.05 [32.61] 1 1 1

(20.47) (17.55) (13.49) ( 8.34) ( 5.49) ( 9.47) (11.32) (12.83) (15.97)
South Korea 42.58 [46.70] 33.18 [38.94] 24.65 [23.62] 13.73 [10.74] 11.50 [11.11] 21.41 [20.69] 28.55 [27.83] 34.73 [33.22] 39.56 [35.31] 1 1 1

(24.95) (19.33) (15.63) ( 9.97) ( 6.97) ( 9.16) (11.69) (14.52) (17.28)
Spain 53.61 [53.09] 38.12 [35.18] 26.17 [26.45] 13.42 [11.47] 11.38 [10.33] 17.79 [18.63] 22.64 [21.77] 26.79 [25.95] 32.24 [28.97] 1 1 1

(23.56) (17.66) (11.36) ( 8.32) ( 6.94) (10.92) (14.08) (16.75) (19.69)
UK 44.92 [43.98] 43.73 [50.74] 36.82 [35.30] 17.47 [15.47] 12.07 [11.30] 19.81 [18.64] 24.12 [22.98] 26.39 [26.30] 27.64 [27.88] 1 2 1

(23.48) (17.42) (18.84) ( 9.36) ( 5.79) ( 8.74) (10.43) (11.69) (13.49)
US 26.93 [22.47] 32.76 [32.93] 26.99 [26.16] 13.86 [14.21] 12.71 [13.68] 22.44 [25.36] 32.78 [35.99] 41.59 [45.79] 48.62 [53.52] 10 10 1

(21.19) (14.90) (14.31) ( 6.82) ( 5.36) ( 8.77) (10.31) (11.53) (13.63)

Main descriptive statistics for the contribution (in percentage) of different maturities to the noise measure. The Table reports
the mean, median (in brackets) and standard deviation (in parenthesis) statistics, respectively. The contributionωt(mi) is defined
as |CDSt(mi)−CDS∗t (mi)|/δt . The contributionωt(5) is zero by construction and has been omitted. Column Rank reports the
maturity with highest value in mean, median and standard deviation, respectively.
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Table 7: OLS regressions of principal components of the noise measure

Constant VIX Default DJIndex PC1netvol PC1BA5y Adj-R2 N
Panel A.- PC1 vs Global variables

0.0397 0.0616∗∗∗ 18.20 227
(0.0353) (0.0086)
0.0413 1.8627∗∗∗ 5.00 227
(0.0381) (0.5188)
0.0415 -0.0027∗∗∗ 21.79 227
(0.0346) (0.0003)
0.0426 -0.4468 1.38 185
(0.0410) (0.2366)
0.0371 -0.2316∗∗∗ 10.99 227
(0.0369) (0.0431)
0.0633 0.0366∗ -0.0273 -0.0016∗ -0.4358∗ -0.1173 25.75 185
(0.0364) (0.0183) (0.7145) (0.0007) (0.2107) (0.0778)

Panel B.- PC2 vs Global variables
0.0074 -0.0676∗∗∗ 10.59 227
(0.0527) (0.0128)
0.0032 -3.3799∗∗∗ 8.35 227
(0.0534) (0.7273)
0.0062 0.0024∗∗∗ 8.06 227
(0.0535) (0.0005)
0.0113 0.1716 -0.17 185
(0.0356) (0.2058)
0.0108 0.4195∗∗∗ 17.96 227
(0.0505) (0.0590)
0.0033 -0.0128 0.2222 0.0010 0.1786 0.0030 4.56 185
(0.0356) (0.0179) (0.6990) (0.0007) (0.2061) (0.0761)

Standard errors in parentheses
∗p< 0.05,∗∗p< 0.01,∗∗∗p< 0.001

OLS estimates for the first (PC1) and second (PC2) principal components of the noise measure against a
set of regressors. Panels A and B report the beta estimates for the individual and jointly regressions of PC1
and PC2, respectively. Last column includes the adjusted R-squared. Sample period spans from July 2008
to November 2012.
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Table 8: Panel-data estimates of noise determinants

Two-way cluster Panel-data Fixed-Effects Instrumental Fixed Effects PredictiveTwo-way cluster
Estimate Est. Error p-value Estimate Est. Error p-value Estimate Est. Error p-value Estimate Est. Error p-value

Panel A.- Model I
logBidaskspread5Y 0.5251 0.0766 0.00 0.5251 0.0718 0.00 0.5330 0.0318 0.00 0.5104 0.0842 0.00
logContracts 0.5780 0.1596 0.00 0.5780 0.1554 0.00 0.5650 0.0417 0.00 0.5593 0.1598 0.00
logNetvolume -0.3193 0.1338 0.02 -0.3193 0.1325 0.03 -0.2970 0.0522 0.00 -0.2823 0.1296 0.03
Marketvolatility 0.7383 0.4554 0.11 0.7383 0.3617 0.06 0.7372 0.4698 0.12 0.1310 0.2811 0.64
Default 0.1223 0.1044 0.24 0.1222 0.0990 0.24 0.1338 0.0276 0.00 0.1477 0.1067 0.17
Constant -5.4617 2.4059 0.02 -4.9798 2.3723 0.05 -5.4003 0.8978 0.00 -6.1473 2.2953 0.01
Country Dummies Yes Yes Yes No No No No No No Yes Yes Yes
Observations 3131 3131 3131 3131 3131 3131 3101 3101 3101 3101 3101 3101
R2-coefficient 0.9418 0.9418 0.9418 0.9418 0.9418 0.9418 - - - 0.9417 0.9417 0.9417

Estimate Est. Error p-value Estimate Est. Error p-value Estimate Est. Error p-value Estimate Est. Error p-value
Panel B.- Model II

logBidaskspread5Y 0.5740 0.0611 0.00 0.5740 0.0587 0.00 0.5835 0.0207 0.00 0.5604 0.0612 0.00
∆logContracts -0.2468 0.3914 0.53 -0.2468 0.3522 0.49 -0.2549 0.3100 0.41 -0.2123 0.3634 0.56
∆logNetvolume -0.8498 0.5392 0.12 -0.8498 0.4878 0.10 -0.9074 0.3436 0.01 -1.0404 0.5328 0.05
∆Marketvolatility 0.2862 0.3600 0.43 0.2862 0.2764 0.32 0.2153 0.3742 0.57 0.0917 0.2950 0.76
∆Default -0.2199 0.4621 0.63 -0.2199 0.3897 0.58 -0.0563 0.1950 0.77 -0.2178 0.4554 0.63
Constant -8.6457 0.1042 0.00 -7.3340 0.0961 0.00 -7.3464 0.0347 0.00 -8.6218 0.1051 0.00
Country Dummies Yes Yes Yes No No No No No No Yes Yes Yes
Observations 3115 3115 3115 3115 3115 3115 3099 3099 3099 3099 3099 3099
R2-coefficient 0.9355 0.9355 0.9355 0.9355 0.9355 0.9355 - - - 0.9349 0.9349 0.9349

Panel data estimates for noise measure using different standard estimation methods. The mispricing errors have been computed using the
Pan and Singleton (2008) model. Panel A shows the results for variables inlevels and Panel B for variables in differences. First column
corresponds with pooled time-series cross-sectional regressions with two-way cluster-robust standard errors accounting for country and week
clusters. Second column shows the fixed effect with robust standard errors to autocorrelation and heteroskedasticity. The last two columns
present the estimation for fixed effects and two-cluster using lagged regressors.
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Table 9: Panel-data estimates of noise determinants separated by economic group

Two-way cluster Panel-data Fixed-Effects Instrumental Fixed Effects PredictiveTwo-way cluster
Estimate Est. Error p-value Estimate Est. Error p-value Estimate Est. Error p-value Estimate Est. Error p-value

Panel A.- EE Group
logBidaskspread5Y 0.6416 0.0507 0.00 0.6416 0.0489 0.00 0.6467 0.0239 0.00 0.6218 0.0564 0.00
∆logContracts 0.3284 0.6903 0.63 0.3284 0.7094 0.66 0.3184 0.4928 0.52 0.0445 0.6934 0.95
∆logNetvolume 0.1331 0.5286 0.80 0.1331 0.5253 0.81 0.1501 0.4365 0.73 -0.0350 0.4765 0.94
∆Marketvolatility 0.5541 0.3534 0.12 0.5541 0.3433 0.15 0.4677 0.4836 0.33 0.0962 0.2813 0.73
∆Default -0.9532 0.4837 0.05 -0.9532 0.4734 0.08 -0.8947 0.2665 0.10 -0.8658 0.5152 0.09
Constant -7.9771 0.0509 0.00 -6.5870 0.0881 0.00 -6.5979 0.0438 0.00 -7.9609 0.0579 0.00
Country Dummies Yes Yes Yes No No No No No No Yes Yes Yes
Observations 1482 1482 1482 1482 1482 1482 1474 1474 1474 1474 1474 1474
R2-coefficient 0.9658 0.9658 0.9658 0.9658 0.9658 0.9658 - - - 0.9651 0.9651 0.9651

Estimate Est. Error p-value Estimate Est. Error p-value Estimate Est. Error p-value Estimate Est. Error p-value
Panel B.- AE Group

logBidaskspread5Y 0.4221 0.1103 0.00 0.4221 0.1034 0.01 0.4367 0.0378 0.00 0.4221 0.1082 0.00
∆logContracts -0.2773 0.4491 0.54 -0.2773 0.3619 0.47 -0.2589 0.4047 0.52 -0.0834 0.3974 0.83
∆logNetvolume -1.8605 0.8315 0.03 -1.8605 0.7169 0.04 -2.0425 0.5312 0.00 -2.1216 0.7097 0.00
∆Marketvolatility 0.0004 0.6135 1.00 0.0004 0.4051 1.00 -0.0644 0.5644 0.91 0.0881 0.5208 0.87
∆Default 0.5519 0.6724 0.41 0.5519 0.5276 0.33 0.8290 0.2797 0.00 0.4654 0.6965 0.50
Constant -8.3786 0.1808 0.00 -7.8933 0.1504 0.00 -7.9065 0.0574 0.00 -8.3794 0.1770 0.00
Country Dummies Yes Yes Yes No No No No No No Yes Yes Yes
Observations 1633 1633 1633 1633 1633 1633 1625 1625 1625 1625 1625 1625
R2-coefficient 0.3349 0.3349 0.3349 0.3349 0.3349 0.3349 - - - 0.3437 0.3437 0.3437

Panel data estimates for noise measure using different standard estimation methods considering two groups of countries and variables in dif-
ferences. The mispricing errors have been computed using the Pan and Singleton (2008) model. Panel A shows the results for Emerging
economies (EE) and Panel B for advanced (AE) ones. First column corresponds with pooled time-series cross-sectional regressions with two-
way cluster-robust standard errors accounting for country and week clusters. Second column shows the fixed effect with robust standard errors
to autocorrelation and heteroskedasticity. The last two columns present theestimation for fixed effects and two-cluster using lagged regressors.
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Table 10: Panel-data estimates of noise determinants for alternative pricing models

Two-way cluster Panel data Fixed Effects Instrumental Fixed Effects PredictiveTwo-way cluster
Estimate Est. Error p-value Estimate Est. Error p-value Estimate Est. Error p-value Estimate Est. Error p-value

Panel A.- QIF Model
logBidaskspread5Y 0.3695 0.1049 0.00 0.3793 0.1005 0.00 0.3863 0.0233 0.00 0.3471 0.1015 0.00
∆logContracts 0.2102 0.9473 0.82 0.1503 0.4234 0.72 0.0009 0.7996 0.99 -0.2421 1.1060 0.83
∆logNetvolume -2.9275 1.3588 0.03 -2.9305 1.2655 0.02 -3.0072 0.8787 0.00 -2.6033 1.2017 0.03
∆Marketvolatility 0.2438 0.4459 0.58 0.2440 0.1639 0.14 0.2848 0.4204 0.50 0.1338 0.4581 0.77
∆Default 1.2566 0.5448 0.02 1.2603 0.3937 0.00 1.5150 0.2191 0.00 1.1011 0.5106 0.03
Constant -9.8490 0.1759 0.00 -9.0103 0.2426 0.00 -8.9705 0.0389 0.00 2.7646 0.1597 0.00
Country Dummies Yes Yes Yes No No No No No No Yes Yes Yes
Observations 3168 3168 3168 3168 3168 3168 3152 3152 3152 3152 3152 3152
R2-coefficient 0.6218 0.6218 0.6218 0.6218 0.6218 0.6218 - - - 0.6178 0.6178 0.6178

Estimate Est. Error p-value Estimate Est. Error p-value Estimate Est. Error p-value Estimate Est. Error p-value
Panel B.- NS Model

logBidaskspread5Y 0.1550 0.0916 0.09 0.1634 0.0933 0.08 0.1659 0.0231 0.00 0.1446 0.0922 0.12
∆logContracts -0.1028 0.8326 0.90 -0.1247 0.7723 0.87 -0.2073 0.7914 0.79 -0.0557 0.8174 0.95
∆logNetvolume -2.4881 1.0928 0.02 -2.4662 1.0574 0.02 -2.4301 0.8697 0.01 -1.9586 0.9333 0.04
∆Marketvolatility -0.0499 0.3436 0.88 -0.0499 0.2936 0.87 -0.0715 0.4161 0.86 0.0746 0.3060 0.81
∆Default 0.4474 0.3876 0.25 0.4438 0.3069 0.15 0.5519 0.2168 0.01 0.5448 0.3800 0.15
Constant -8.5070 0.1573 0.00 -8.0439 0.1640 0.00 -8.0039 0.0385 0.00 -8.4916 0.1563 0.00
Country Dummies Yes Yes Yes No No No No No No Yes Yes Yes
Observations 3168 3168 3168 3168 3168 3168 3152 3152 3152 3152 3152 3152
R2-coefficient 0.2651 0.2651 0.2651 0.2651 0.2651 0.2651 0.2631 0.2631 0.2631 0.2631 0.2631 0.2631

Panel data estimates for alternative noise measure using different standard estimation with variables in differences. The mispricing errors have
been computed using a quadratic intensity (Panel A) and Nelson-Siegel (Panel B) model. First column corresponds with pooled time-series
cross-sectional regressions with two-way cluster-robust standard errors accounting for country and week clusters. Second column showsthe
fixed effect with robust standard errors to autocorrelation and heteroskedasticity. The last two columns present the estimation for fixed effects
and two-cluster regressors.
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Figure 1: Cross-sectional median of sovereign CDS for different maturities
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Cross-sectional medians of sovereign CDS spreads of different maturities for advanced (upper
graph) and emerging (lower graph) economies. Advanced economies are Australia, France, Ger-
many, Italy, Japan, Spain, the UK and the US. The maturities of CDS contractsare 1-, 5- and
10-year, respectively. Vertical bars denote some crisis events. The sample period spans from
January 2006 to November 2012. Data frequency is weekly.



Figure 2: Evolution of principal components over time
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Evolution of the aggregated explained variance of three first principal compo-
nents using a rolling window scheme. Each window contains 100 observations.
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Figure 3: The noise measure
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This Figure displays the evolution of different percentiles of the noise measure
using Pan and Singleton (2008) model as pricing model. The noise measure is
computed for advanced (upper graph) and emerging (lower graph) economies.
Advanced countries comprise Australia, France, Germany, Italy, Japan, Spain,
the United Kingdom and the US. The sample period spans from January 2006
to November 2012. Data frequency is weekly.
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Figure 4: Loading coefficients for principal components of the noise measure

0 ArgentinaAustralia Brazil China France GermanyIndonesia Italy Japan Mexico S.Arabia S.Africa Spain S.Korea UK USA
−0.4

−0.2

0

0.2

0.4

0.6

0.8

1
PC1

ArgentinaAustralia Brazil China France GermanyIndonesia Italy Japan Mexico S.Arabia S.Africa Spain S.Korea UK USA
−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6
PC2

49



Figure 5: Cross-sectional median of sovereign CDS and qq-plots for differentmodels
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Cross-sectional medians (left column) and qq-plots (right column) of sovereign CDS spreads. Each row
compares the different models. The first row shows the Pan and Singleton(2008) model against the
quadratic intensity model (QIF). The second row contains the Pan and Singleton (2008) model against
the Nelson and Siegel (1987) model. The third row depicts the QIF model against the Nelson and Siegel
(1987) model.


